SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1664 3224 ;pers:(Rönnberg Elin)"

Search: L773:1664 3224 > Rönnberg Elin

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gong, Yitao, et al. (author)
  • An optimized method for IgE-mediated degranulation of human lung mast cells
  • 2024
  • In: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 15
  • Journal article (peer-reviewed)abstract
    • Background: Mast cells are critically involved in IgE-mediated diseases, e.g., allergies and asthma. Human mast cells are heterogeneous, and mast cells from different anatomical sites have been shown to respond differently to certain stimuli and drugs. The origin of the mast cells is therefore of importance when setting up a model system, and human lung mast cells are highly relevant cells to study in the context of asthma. We therefore set out to optimize a protocol of IgE-mediated activation of human lung mast cells.Methods: Human lung mast cells were extracted from lung tissue obtained from patients undergoing pulmonary resection by enzyme digestion and mechanical disruption followed by CD117 magnetic-activated cell sorting (MACS) enrichment. Different culturing media and conditions for the IgE-mediated degranulation were tested to obtain an optimized method.Results: IgE crosslinking of human lung mast cells cultured in serum-free media gave a stronger response compared to cells cultured with 10% serum. The addition of stem cell factor (SCF) did not enhance the degranulation. However, when the cells were put in fresh serum-free media 30 minutes prior to the addition of anti-IgE antibodies, the cells responded more vigorously. Maximum degranulation was reached 10 minutes after the addition of anti-IgE. Both CD63 and CD164 were identified as stable markers for the detection of degranulated mast cells over time, while the staining with anti-CD107a and avidin started to decline 10 minutes after activation. The levels of CD203c and CD13 did not change in activated cells and therefore cannot be used as degranulation markers of human lung mast cells.Conclusions: For an optimal degranulation response, human lung mast cells should be cultured and activated in serum-free media. With this method, a very strong and consistent degranulation response with a low donor-to-donor variation is obtained. Therefore, this model is useful for further investigations of IgE-mediated mast cell activation and exploring drugs that target human lung mast cells, for instance, in the context of asthma.
  •  
2.
  • Johnzon, Carl-Fredrik, et al. (author)
  • Live Staphylococcus aureus Induces Expression and Release of Vascular Endothelial Growth Factor in Terminally Differentiated Mouse Mast Cells
  • 2016
  • In: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 7
  • Journal article (peer-reviewed)abstract
    • Mast cells have been shown to express vascular endothelial growth factor (VEGF), thereby implicating mast cells in pro-angiogenic processes. However, the mechanism of VEGF induction in mast cells and the possible expression of VEGF in fully mature mast cells have not been extensively studied. Here, we report that terminally differentiated peritoneal cell-derived mast cells can be induced to express VEGF in response to challenge with Staphylococcus aureus, thus identifying a mast cell-bacteria axis as a novel mechanism leading to VEGF release. Whereas live bacteria produced a robust upregulation of VEGF in mast cells, heat-inactivated bacteria failed to do so, and bacteria-conditioned media did not induce VEGF expression. The induction of VEGF was not critically dependent on direct cell-cell contact between bacteria and mast cells. Hence, these findings suggest that VEGF can be induced by soluble factors released during the co-culture conditions. Neither of a panel of bacterial cell-wall products known to activate toll-like receptor (TLR) signaling promoted VEGF expression in mast cells. In agreement with the latter, VEGF induction occurred independently of Myd88, an adaptor molecule that mediates the downstream events following TLR engagement. The VEGF induction was insensitive to nuclear factor of activated T-cells inhibition but was partly dependent on the nuclear factor kappa light-chain enhancer of activated B cells signaling pathway. Together, these findings identify bacterial challenge as a novel mechanism by which VEGF is induced in mast cells.
  •  
3.
  • Johnzon, Carl-Fredrik, et al. (author)
  • Mastitis Pathogens with high Virulence in a Mouse Model Produce a Distinct cytokine Profile In Vivo
  • 2016
  • In: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 7
  • Journal article (peer-reviewed)abstract
    • Mastitis is a serious medical condition of dairy cattle. Here, we evaluated whether the degree of virulence of mastitis pathogens in a mouse model can be linked to the inflammatory response that they provoke. Clinical isolates of Staphylococcus aureus (S. aureus) (strain 556 and 392) and Escherichia coli (E. coli) (676 and 127), and laboratory control strains [8325-4 (S. aureus) and MG1655 (E. coli)], were injected i.p. into mice, followed by the assessment of clinical scores and inflammatory parameters. As judged by clinical scoring, E. coli 127 exhibited the largest degree of virulence among the strains. All bacterial strains induced neutrophil recruitment. However, whereas E. coli 127 induced high peritoneal levels of CXCL1, G-CSF, and CCL2, strikingly lower levels of these were induced by the less virulent bacterial strains. High concentrations of these compounds were also seen in blood samples taken from animals infected with E. coli 127, suggesting systemic inflammation. Moreover, the levels of CXCL1 and G-CSF, both in the peritoneal fluid and in plasma, correlated with clinical score. Together, these findings suggest that highly virulent clinical mastitis isolates produce a distinct cytokine profile that shows a close correlation with the severity of the bacterial infection.
  •  
4.
  • Ravindran, Avinash, et al. (author)
  • An Optimized Protocol for the Isolation and Functional Analysis of Human Lung Mast Cells
  • 2018
  • In: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 9
  • Journal article (peer-reviewed)abstract
    • Background: Mast cells are tissue-resident inflammatory cells defined by their high granularity and surface expression of the high-affinity IgE receptor, Fc + RI, and CD117/KIT, the receptor for stem cell factor (SCF). There is a considerable heterogeneity among mast cells, both phenotypically and functionally. Human mast cells are generally divided into two main subtypes based on their protease content; the mucosa-associated MCT (tryptase positive and chymase negative mast cell) and the connective tissue associated-residing MCTC (tryptase and chymase positive mast cell). Human lung mast cells exhibit heterogeneity in terms of cellular size, expression of cell surface receptors, and secreted mediators. However, knowledge about human lung mast cell heterogeneity is restricted to studies using immunohistochemistry or purified mast cells. Whereas the former is limited by the number of cellular markers that can be analyzed simultaneously, the latter suffers from issues related to cell yield.Aim: To develop a protocol that enables isolation of human lung mast cells at high yields for analysis of functional properties and detailed analysis using single-cell based analyses of protein (flow cytometry) or RNA (RNA-sequencing) expression.Methods: Mast cells were isolated from human lung tissue by a sequential combination of washing, enzymatic digestion, mechanical disruption, and density centrifugation using Percoll (WEMP). As a comparison, we also isolated mast cells using a conventional enzyme-based protocol. The isolated cells were analyzed by flow cytometry.Results: We observed a significant increase in the yield of total human lung CD45(+) immune cells and an even more pronounced increase in the yield of CD117(+) mast cells with the WEMP protocol in comparison to the conventional protocols. In contrast, the frequency of the rare lymphocyte subset innate lymphoid cells group 2 (ILC2) did not differ between the two methods.Conclusion: The described WEMP protocol results in a significant increase in the yield of human lung mast cells compared to a conventional protocol. Additionally, the WEMP protocol enables simultaneous isolation of different immune cell populations such as lymphocytes, monocytes, and granulocytes while retaining their surface marker expression that can be used for advanced single-cell analyses including multi-color flow cytometry and RNA-sequencing.
  •  
5.
  • Rönnberg, Elin, et al. (author)
  • Divergent Effects of Acute and Prolonged Interleukin 33 Exposure on Mast Cell IgE-Mediated Functions
  • 2019
  • In: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Epithelial cytokines, including IL-33 and Thymic stromal lymphopoietin (TSLP), have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells. In the current study, we investigated how acute vs. prolonged exposure of mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.Methods: Human lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.Results: IL-33 induced the release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, 4 days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in Fc epsilon RI expression.Conclusion: We show that IL-33 plays dual roles in mast cells, in which its acute effects include cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel regulatory pathway that modulates IgE-mediated human mast cell responses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view