SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 "

Sökning: L773:1680 7316

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aas, W., et al. (författare)
  • Lessons learnt from the first EMEP intensive measurement periods
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 12:17, s. 8073-8094
  • Tidskriftsartikel (refereegranskat)abstract
    • The first EMEP intensive measurement periods were held in June 2006 and January 2007. The measurements aimed to characterize the aerosol chemical compositions, including the gas/aerosol partitioning of inorganic compounds. The measurement program during these periods included daily or hourly measurements of the secondary inorganic components, with additional measurements of elemental- and organic carbon (EC and OC) and mineral dust in PM1, PM2.5 and PM10. These measurements have provided extended knowledge regarding the composition of particulate matter and the temporal and spatial variability of PM, as well as an extended database for the assessment of chemical transport models. This paper summarise the first experiences of making use of measurements from the first EMEP intensive measurement periods along with EMEP model results from the updated model version to characterise aerosol composition. We investigated how the PM chemical composition varies between the summer and the winter month and geographically. The observation and model data are in general agreement regarding the main features of PM10 and PM2.5 composition and the relative contribution of different components, though the EMEP model tends to give slightly lower estimates of PM10 and PM2.5 compared to measurements. The intensive measurement data has identified areas where improvements are needed. Hourly concurrent measurements of gaseous and particulate components for the first time facilitated testing of modelled diurnal variability of the gas/aerosol partitioning of nitrogen species. In general, the modelled diurnal cycles of nitrate and ammonium aerosols are in fair agreement with the measurements, but the diurnal variability of ammonia is not well captured. The largest differences between model and observations of aerosol mass are seen in Italy during winter, which to a large extent may be explained by an underestimation of residential wood burning sources. It should be noted that both primary and secondary OC has been included in the calculations for the first time, showing promising results. Mineral dust is important, especially in southern Europe, and the model seems to capture the dust episodes well. The lack of measurements of mineral dust hampers the possibility for model evaluation for this highly uncertain PM component. There are also lessons learnt regarding improved measurements for future intensive periods. There is a need for increased comparability between the measurements at different sites. For the nitrogen compounds it is clear that more measurements using artefact free methods based on continuous measurement methods and/or denuders are needed. For EC/OC, a reference methodology (both in field and laboratory) was lacking during these periods giving problems with comparability, though measurement protocols have recently been established and these should be followed by the Parties to the EMEP Protocol. For measurements with no defined protocols, it might be a good solution to use centralised laboratories to ensure comparability across the network. To cope with the introduction of these new measurements, new reporting guidelines have been developed to ensure that all proper information about the methodologies and data quality is given.
2.
  • Abbatt, J. P. D., et al. (författare)
  • Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 12:14, s. 6237-6271
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of ice in the formation of chemically active halogens in the environment requires a full understanding because of its role in atmospheric chemistry, including controlling the regional atmospheric oxidizing capacity in specific situations. In particular, ice and snow are important for facilitating multiphase oxidative chemistry and as media upon which marine algae live. This paper reviews the nature of environmental ice substrates that participate in halogen chemistry, describes the reactions that occur on such substrates, presents the field evidence for ice-mediated halogen activation, summarizes our best understanding of ice-halogen activation mechanisms, and describes the current state of modeling these processes at different scales. Given the rapid pace of developments in the field, this paper largely addresses advances made in the past five years, with emphasis given to the polar boundary layer. The integrative nature of this field is highlighted in the presentation of work from the molecular to the regional scale, with a focus on understanding fundamental processes. This is essential for developing realistic parameterizations and descriptions of these processes for inclusion in larger scale models that are used to determine their regional and global impacts.
  •  
3.
  • Achtert, Peggy, 1982-, et al. (författare)
  • On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space-borne lidar
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 12:8, s. 3791-3798
  • Tidskriftsartikel (refereegranskat)abstract
    • The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
  •  
4.
  • Aemisegger, F., et al. (författare)
  • Deuterium excess as a proxy for continental moisture recycling and plant transpiration
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus. - 1680-7316. ; 14:8, s. 4029-4054
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the evaporation process and its link to the atmospheric circulation is central for a better understanding of the feedbacks between the surface water components and the atmosphere. In this study, we use 5 months of deuterium excess (d) measurements at the hourly to daily timescale from a cavity ring-down laser spectrometer to characterise the evaporation source of low-level continental water vapour at the long-term hydrometeorological monitoring site Rietholzbach in northeastern Switzerland. To reconstruct the phase change history of the air masses in which we measure the d signature and to diagnose its area of surface evaporation we apply a Lagrangian moisture source diagnostic. With the help of a correlation analysis we investigate the strength of the relation between d measurements and the moisture source conditions. Temporal episodes with a duration of a few days of strong anticorrelation between d and relative humidity as well as temperature are identified. The role of plant transpiration, the large-scale advection of remotely evaporated moisture, the local boundary layer dynamics at the measurement site and recent precipitation at the site of evaporation are discussed as reasons for the existence of these modes of strong anticorrelation between d and moisture source conditions. We show that the importance of continental moisture recycling and the contribution of plant transpiration to the continental evaporation flux may be deduced from the d-relative humidity relation at the seasonal timescale as well as for individual events. The methodology and uncertainties associated with these estimates of the transpiration fraction of evapotranspiration are presented and the proposed novel framework is applied to individual events from our data set. Over the whole analysis period (August to December 2011) a transpiration fraction of the evapotranspiration flux over the continental part of the moisture source region of 62 % is found albeit with a large event-to-event variability (0 % to 89 %) for continental Europe. During days of strong local moisture recycling a higher overall transpiration fraction of 76 % (varying between 65 % and 86 %) is found. These estimates are affected by uncertainties in the assumptions involved in our method as well as by parameter uncertainties. An average uncertainty of 11 % results from the strong dependency of the transpiration estimates on the choice of the non-equilibrium fractionation factor. Other uncertainty sources like the influence of boundary layer dynamics are probably large but more difficult to quantify. Nevertheless, such Lagrangian estimates of the transpiration part of continental evaporation could potentially be useful for the verification of model estimates of this important land-atmosphere coupling parameter.
5.
  • Ahlm, Lars, 1976-, et al. (författare)
  • A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 10:6, s. 3063-3079
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.
  •  
6.
  • Ahlm, Lars, 1976-, et al. (författare)
  • Aerosol number fluxes over the Amazon rain forest during the wet season
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 9:24, s. 9381-9400
  • Tidskriftsartikel (refereegranskat)abstract
    • Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt=2.4×10−3×u* where u* is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.
  •  
7.
  • Ahlm, Lars, et al. (författare)
  • Emission and dry deposition of accumulation mode particles in the Amazon Basin
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 10:21, s. 10237-10253
  • Tidskriftsartikel (refereegranskat)abstract
    • Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25–2.5 μm were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25–0.45 μm in diameter, pointed downward in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. In the diameter range 0.5–2.5 μm, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net emission fluxes dominated. However, in wind sectors associated with higher anthropogenic influence, net deposition fluxes dominated. The net emission fluxes were interpreted as primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and these emissions were best correlated with horizontal wind speed by the equation log10F=0.47·U+2.26 where F is the emission number flux of 0.5–2.5 μm particles [m−2s−1] and U is the horizontal wind speed [ms−1] at the top of the tower.
  •  
8.
  • Allen, G., et al. (författare)
  • South East Pacific atmospheric composition and variability sampled = ong 20 degrees S during VOCALS-REx
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 11:11, s. 5237-5262
  • Tidskriftsartikel (refereegranskat)abstract
    • The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in = presenting the region. This study synthesises selected aircraft, ship = d surface site observations from VOCALS-REx to statistically summarise = d characterise the atmospheric composition and variability of the = rine Boundary Layer (MBL) and Free Troposphere (FT) along the 20 = grees S parallel between 70 degrees W and 85 degrees W. Significant = nal gradients in mean MBL sub-micron aerosol particle size and = mposition, carbon monoxide, sulphur dioxide and ozone were seen over = e campaign, with a generally more variable and polluted coastal = vironment and a less variable, more pristine remote maritime regime. = adients in aerosol and trace gas concentrations were observed to be = sociated with strong gradients in cloud droplet number. The FT was = ten more polluted in terms of trace gases than the MBL in the mean; = wever increased variability in the FT composition suggests an episodic = ture to elevated concentrations. This is consistent with a complex = rtical interleaving of airmasses with diverse sources and hence = llutant concentrations as seen by generalised back trajectory = alysis, which suggests contributions from both local and long-range = urces. Furthermore, back trajectory analysis demonstrates that the = served zonal gradients both in the boundary layer and the free = oposphere are characteristic of marked changes in airmass history with = stance offshore - coastal boundary layer airmasses having been in = cent contact with the local land surface and remote maritime airmasses = ving resided over ocean for in excess of ten days. Boundary layer = mposition to the east of 75 degrees W was observed to be dominated by = astal emissions from sources to the west of the Andes, with evidence = r diurnal pumping of the Andean boundary layer above the height of the = rine capping inversion. Analysis of intra-campaign variability in = mospheric composition was not found to be significantly correlated = th observed low-frequency variability in the large scale flow pattern; = mpaign-average interquartile ranges of CO, SO(2) and O(3) = ncentrations at all longitudes were observed to dominate over much = aller differences in median concentrations calculated between periods = different flow regimes. The campaign climatology presented here aims = provide a valuable dataset to inform model simulation and future = ocess studies, particularly in the context of aerosol-cloud = teraction and further evaluation of dynamical processes in the SEP = gion for conditions analogous to those during VOCALS-REx. To this end, = r results are discussed in terms of coastal, transitional and remote = atial regimes in the MBL and FT and a gridded dataset are provided as = resource.
  •  
9.
  • Andersson, Sandra, et al. (författare)
  • Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajokull in 2008-2010 based on CARIBIC observations
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus Gesellschaft Gmb. - 1680-7316. ; 13:4, s. 1781-1796
  • Tidskriftsartikel (refereegranskat)abstract
    • Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska), Sarychev (Russia) and also during the Eyjafjallajokull (Iceland) eruptions in the period 2008-2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10-12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajokull in spring 2010. Elemental concentrations of the collected aerosol were obtained by accelerator-based analysis. Aerosol from the Eyjafjallajokull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajokull were dominated by the ash and sulphate component (similar to 45% each) while samples collected in the tropopause region and LMS mainly consisted of sulphate (50-77%) and carbon (21-43%). These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e) of sulphur dioxide in the studied volcanic cloud was estimated to be 45 +/- 22 days.
10.
  • Angelbratt, Jon, 1981-, et al. (författare)
  • A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 11:13, s. 6167-6183
  • Tidskriftsartikel (refereegranskat)abstract
    • Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF) and carbon monoxide (CO) and tropopause height are used to reduce the variability in the methane (CH(4)) and nitrous oxide (N(2)O) total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60 degrees N, 11 degrees E, 600 ma.s.l.) and used on three other European FTIR stations, i.e. Jungfraujoch (47 degrees N, 8 degrees E, 3600 ma.s.l.), Zugspitze (47 degrees N, 11 degrees E, 3000 ma.s.l.), and Kiruna (68 degrees N, 20 degrees E, 400 ma.s.l.). Linear CH(4) trends between 0.13 +/- 0.01-0.25 +/- 0.02% yr(-1) were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH(4) total columns. This model shows a growth in 1996-1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH(4) amount increases between 0.57 +/- 0.22-1.15 +/- 0.17% yr(-1). Linear N(2)O trends between 0.19 +/- 0.01-0.40 +/- 0.02% yr(-1) were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N(2)O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N(2)O trends between the FTIR sites is of stratospheric origin. This agrees well with the N(2)O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98 +/- 0.28% yr(-1), and considerably smaller trends at lower latitudes, 0.27 +/- 0.25% yr(-1). The multiple regression model was compared with two other trend methods, the ordinary linear regression and a Bootstrap algorithm. The multiple regression model estimated CH(4) and N(2)O trends that differed up to 31% compared to the other two methods and had uncertainties that were up to 300% lower. Since the multiple regression method were carefully validated this stresses the importance to account for variability in the total columns when estimating trend from solar FTIR data.
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (114)
Typ av publikation
tidskriftsartikel (232)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (233)
övrigt vetenskapligt (1)
Författare/redaktör
Kulmala, M. (28)
Murtagh, Donal P., 1 ... (27)
Urban, Joachim, 1964 ... (21)
Swietlicki, Erik (19)
Krejci, Radovan, (18)
Wiedensohler, A. (16)
visa fler...
Höpfner, M. (13)
Arneth, Almut (12)
Walker, K. A. (11)
Blumenstock, T. (11)
Hase, F. (11)
Tjernström, Michael, (11)
Mellqvist, Johan, 19 ... (10)
Coe, H. (10)
Baltensperger, U. (10)
Fischer, H (10)
Eriksson, Patrick, 1 ... (10)
Leck, Caroline, (10)
Milz, Mathias, (10)
Stiller, G.P. (10)
Kerminen, V. -M (10)
Ström, Johan, (9)
Prevot, A. S. H. (9)
Simpson, David, 1961 ... (9)
Birmili, W. (9)
Bernath, P. F. (9)
Mahieu, E. (9)
Asmi, A. (9)
Lihavainen, H. (9)
Tunved, Peter, (9)
Glatthor, N. (9)
Petaja, T. (9)
Yttri, K. E. (8)
Simpson, D. (8)
Schneider, M (8)
Nilsson, Douglas, (8)
Riipinen, Ilona, (8)
Nieminen, T. (8)
Weingartner, E. (8)
Sellegri, K. (8)
Boone, C. D. (8)
Grabowski, U. (8)
Manninen, H. E. (8)
Putaud, J. P. (7)
Brohede, Samuel, 197 ... (7)
Schurgers, Guy (7)
Laaksonen, A (7)
Notholt, J. (7)
Asmi, E. (7)
Aalto, P. P. (7)
visa färre...
Lärosäte
Stockholms universitet (110)
Lunds universitet (69)
Chalmers tekniska högskola (69)
Luleå tekniska universitet (24)
Göteborgs universitet (20)
Uppsala universitet (6)
visa fler...
Kungliga Tekniska Högskolan (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (234)
Ämne (HSV)
Naturvetenskap (176)
Teknik (9)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy