SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 "

Sökning: L773:1680 7316

  • Resultat 1-10 av 286
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bartels-Rausch, T., et al. (författare)
  • A review of air-ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 14:3, s. 1587-1633
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air-ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed. © Author(s) 2014.
2.
  • Hallquist, Åsa M., et al. (författare)
  • Particle and gaseous emissions from individual diesel and CNG buses
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 13:10, s. 5337-5350
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG)-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz) and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz). The gaseous constituents (CO, HC and NO) were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.). Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs) with different after-treatment, including selective catalytic reduction (SCR), exhaust gas recirculation (EGR) and with and without diesel particulate filter (DPF). The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN) were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs) showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel)−1 and for the CNG buses 41 ± 26 g (kg fuel)−1. An anti-relationship between EFNOx and EFPM was observed especially for buses with no DPF, and there was a positive relationship between EFPM and EFCO.
  •  
3.
  • Spolaor, A., et al. (författare)
  • Seasonality of halogen deposition in polar snow and ice
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric chemistry of iodine and bromine in Polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine emission is at- tributed to biological communities in the open ocean and hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial– interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arc- tic and better understand potential links to sea ice. We find that bromine and iodine concentrations and Br enrichment (relative to sea salt content) in polar ice do vary seasonally in Arctic snow and Antarctic ice. Although seasonal vari- ability in halogen emission sources is recorded by satellite- based observations of tropospheric halogen concentrations, seasonal patterns observed in snowpack are likely also in- fluenced by photolysis-driven processes. Peaks of bromine concentration and Br enrichment in Arctic snow and Antarc- tic ice occur in spring and summer, when sunlight is present. A secondary bromine peak, observed at the end of summer, is attributed to bromine deposition at the end of the polar day. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions. These findings support previous observations of iodine peaks in winter snow strata attributed to the absence of sunlight-driven photolytic re-mobilisation of iodine from surface snow. Further investigation is required to confirm these proposed mechanisms explaining observa- tions of halogens in polar snow and ice, and to evaluate the extent to which halogens may be applied as sea ice proxies.
  •  
4.
5.
  • Abbatt, J. P. D., et al. (författare)
  • Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 12:14, s. 6237-6271
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of ice in the formation of chemically active halogens in the environment requires a full understanding because of its role in atmospheric chemistry, including controlling the regional atmospheric oxidizing capacity in specific situations. In particular, ice and snow are important for facilitating multiphase oxidative chemistry and as media upon which marine algae live. This paper reviews the nature of environmental ice substrates that participate in halogen chemistry, describes the reactions that occur on such substrates, presents the field evidence for ice-mediated halogen activation, summarizes our best understanding of ice-halogen activation mechanisms, and describes the current state of modeling these processes at different scales. Given the rapid pace of developments in the field, this paper largely addresses advances made in the past five years, with emphasis given to the polar boundary layer. The integrative nature of this field is highlighted in the presentation of work from the molecular to the regional scale, with a focus on understanding fundamental processes. This is essential for developing realistic parameterizations and descriptions of these processes for inclusion in larger scale models that are used to determine their regional and global impacts.
  •  
6.
  • Abdelkader, M., et al. (författare)
  • Dust-air pollution dynamics over the eastern Mediterranean
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 15:16, s. 9173-9189
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions of desert dust and air pollution over the eastern Mediterranean (EM) have been studied, focusing on two distinct dust transport events on 22 and 28 September 2011. The atmospheric chemistry-climate model EMAC has been used at about 50 km grid spacing, applying an on-line dust emission scheme and calcium as a proxy for dust reactivity. EMAC includes a detailed tropospheric chemistry mechanism, aerosol microphysics and thermodynamics schemes to describe dust aging. The model is evaluated using ground-based observations for aerosol concentrations and aerosol optical depth (AOD) as well as satellite observations. Simulation results and back trajectory analysis show that the development of synoptic disturbances over the EM can enhance dust transport from the Sahara and Arabian deserts in frontal systems that also carry air pollution to the EM. The frontal systems are associated with precipitation that controls the dust removal. Our results show the importance of chemical aging of dust, which increases particle size, dust deposition and scavenging efficiency during transport, overall reducing the lifetime relative to non-aged dust particles. The relatively long travel periods of Saharan dust result in more sustained aging compared to Arabian dust. Sensitivity simulations indicate 3 times more dust deposition of aged relative to pristine dust, which significantly decreases the dust lifetime and loading.
  •  
7.
  • Abdelkader, Mohamed, et al. (författare)
  • Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 17:6, s. 3799-3821
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust-ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol-cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42-), bisulfate (HSO4-), nitrate (NO 3) and chloride (Cl), on the surface of mineral particles. The subsequent neutralization reactions with the calcium cation form various salt compounds that cause the uptake of water vapor from the atmosphere, i.e., through the chemical aging of dust particles leading to an increase of 0.15 in the AOD under subsaturated conditions (July 2009 monthly mean). As a result of the radiative feedback on surface winds, dust emissions increased regionally. On the other hand, the aged dust particles, compared to the non-aged particles, are more efficiently removed by both wet and dry deposition due to the increased hygroscopicity and particle size (mainly due to water uptake). The enhanced removal of aged particles decreases the dust burden and lifetime, which indirectly reduces the dust AOD by 0.05 (monthly mean). Both processes can be significant (major dust outflow, July 2009), but the net effect depends on the region and level of dust chemical aging.
  •  
8.
  • Achtert, Peggy, 1982-, et al. (författare)
  • On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space-borne lidar
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 12:8, s. 3791-3798
  • Tidskriftsartikel (refereegranskat)abstract
    • The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
  •  
9.
  • Ahlm, Lars, 1976-, et al. (författare)
  • A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 10:6, s. 3063-3079
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.
  •  
10.
  • Ahlm, Lars, 1976-, et al. (författare)
  • Aerosol number fluxes over the Amazon rain forest during the wet season
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 9:24, s. 9381-9400
  • Tidskriftsartikel (refereegranskat)abstract
    • Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt=2.4×10−3×u* where u* is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 286
Åtkomst
fritt online (128)
Typ av publikation
tidskriftsartikel (283)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (283)
övrigt vetenskapligt (3)
Författare/redaktör
Murtagh, Donal P., 1 ... (23)
Krejci, Radovan, (21)
Riipinen, Ilona, (20)
Kulmala, M (19)
Urban, Joachim, 1964 ... (19)
Simpson, David, 1961 ... (18)
visa fler...
Ström, Johan, (14)
Milz, Mathias, (14)
Tunved, Peter, (14)
Leck, Caroline, (13)
Höpfner, M. (13)
Walker, K. A. (12)
Mellqvist, Johan, 19 ... (12)
Hase, F. (12)
Petaja, T. (11)
Blumenstock, T. (11)
Stiller, G. P., (11)
Tjernström, Michael, (10)
Nilsson, E. D., (10)
Mahieu, E. (10)
Bernath, P. F. (9)
Schneider, M (9)
Fischer, H., (9)
Coe, H. (9)
Buehler, Stefan (9)
Glatthor, N. (9)
Prevot, A. S. H. (8)
Yttri, K. E. (8)
Wiedensohler, A. (8)
Khosrawi, Farahnaz, (8)
Hansson, Hans Christ ... (8)
Nilsson, Douglas, (8)
Laaksonen, A. (8)
Pandis, S. N. (8)
Nieminen, T. (8)
Eriksson, Patrick, 1 ... (8)
Funke, B. (8)
Burrows, J.P., (8)
Boone, C. D. (8)
Grabowski, U. (8)
Kerminen, V. -M (8)
Brohede, Samuel, 197 ... (7)
Mårtensson, Monica, (7)
Baltensperger, U. (7)
De Maziere, M. (7)
Notholt, J. (7)
Clarmann, T. von (7)
Steck, T. (7)
Catoire, V. (7)
Facchini, M. C. (7)
visa färre...
Lärosäte
Stockholms universitet (153)
Chalmers tekniska högskola (89)
Lunds universitet (35)
Luleå tekniska universitet (28)
Göteborgs universitet (28)
Uppsala universitet (11)
visa fler...
Kungliga Tekniska Högskolan (3)
Örebro universitet (3)
Umeå universitet (3)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (282)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (261)
Teknik (20)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy