SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 "

Sökning: L773:1680 7316

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buehler, S.A., et al. (författare)
  • A cloud filtering method for microwave upper tropospheric humidity measurements
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents a cloud filtering method for upper tropospheric humidity (UTH) measurements at 183.31±1.00 GHz. The method uses two criteria: a viewing angle dependent threshold on the brightness temperature at 183.31±1.00 GHz, and a threshold on the brightness temperature difference between another channel and 183.31±1.00 GHz. Two different alternatives, using 183.31±3.00 GHz or 183.31±7.00 GHz as the other channel, are studied. The robustness of this cloud filtering method is demonstrated by a mid-latitudes winter case study. The paper then studies different biases on UTH climatologies. Clouds are associated with high humidity, therefore the possible dry bias introduced by cloud filtering is discussed and compared to the wet biases introduced by the clouds radiative effect if no filtering is done. This is done by means of a case study, and by means of a stochastic cloud database with representative statistics for midlatitude conditions. Both studied filter alternatives perform nearly equally well, but the alternative using 183.31±3.00 GHz as other channel is preferable, because that channel is less likely to see the Earth's surface than the one at 183.31±7.00 GHz. The consistent result of all case studies and for both filter alternatives is that both cloud wet bias and cloud filtering dry bias are modest for microwave data. The recommended strategy is to use the cloud filtered data as an estimate for the true all-sky UTH value, but retain the unfiltered data to have an estimate of the cloud induced uncertainty. The focus of the paper is on midlatitude data, since atmospheric data to test the filter for that case were readily available. The filter is expected to be applicable also to subtropical and tropical data, but should be further validated with case studies similar to the one presented here for those cases.
  •  
2.
  • Buehler, Stefan, et al. (författare)
  • A multi-instrument comparison of integrated water vapour measurements at a high latitude site
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare measurements of integrated water vapour (IWV) over a subarctic site (Kiruna, Northern Sweden) from five different sensors and retrieval methods: Radiosondes, Global Positioning System (GPS), ground-based Fourier-transform infrared (FTIR) spectrometer, ground-based microwave radiometer, and satellite-based microwave radiometer (AMSU-B). Additionally, we compare also to ERA-Interim model reanalysis data. GPS-based IWV data have the highest temporal coverage and resolution and are chosen as reference data set. All datasets agree reasonably well, but the ground-based microwave instrument only if the data are cloud-filtered. We also address two issues that are general for such intercomparison studies, the impact of different lower altitude limits for the IWV integration, and the impact of representativeness error. We develop methods for correcting for the former, and estimating the random error contribution of the latter. A literature survey reveals that reported systematic differences between differenttechniques are study-dependent and show no overall consistent pattern. Further improving the absolute accuracy of IWV measurements and providing climate-quality time series therefore remain challenging problems.
3.
  • Johnston, M.S., et al. (författare)
  • Diagnosing the average spatio-temporal impact of convective systems
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:23
  • Tidskriftsartikel (refereegranskat)abstract
    • An earlier method to determine the mean response of upper-tropospheric water to localised deep convective systems (DC systems) is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009), several fields related to moist processes and radiation from various satellites are composited with respect to the local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the earlier study are the isolation of DC systems in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterisation of the DC-system-induced anomalies. The observed DC systems in this study propagate westward at similar to 4 ms(-1). Both the upper-tropospheric relative humidity and the outgoing longwave radiation are substantially perturbed over a broad horizontal extent and for periods > 30 h. The cloud fraction anomaly is fairly constant with height but small maximum can be seen around 200 hPa. The cloud ice water content anomaly is mostly confined to pressures greater than 150 hPa and reaches its maximum around 450 hPa, a few hours after the peak convection. Consistent with the large increase in upper-tropospheric cloud ice water content, albedo increases dramatically and persists about 30 h after peak convection. Applying the compositing technique to EC-Earth allows an assessment of the model representation of DC systems. The model captures the large-scale responses, most notably for outgoing longwave radiation, but there are a number of important differences. DC systems appear to propagate east-ward in the model, suggesting a strong link to Kelvin waves instead of equatorial Rossby waves. The diurnal cycle in the model is more pronounced and appears to trigger new convection further to the west each time. Finally, the modelled ice water content anomaly peaks at pressures greater than 500 hPa and in the upper troposphere between 250 hPa and 500 hPa, there is less ice than the observations and it does not persist as long after peak convection. The modelled upper-tropospheric cloud fraction anomaly, however, is of a comparable magnitude and exhibits a similar longevity as the observations.
4.
  • Muller, S.C., et al. (författare)
  • Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 0 to ĝ€"20%, when compared to satellite experiments. Also a comparison between AMSOS and in-situ hygrosondes FISH and FLASH have been performed. A matching in the short overlap region in the upper troposphere of the lidar measurements from the DIAL
5.
  • Sporre, Moa, et al. (författare)
  • Aerosol indirect effects on continental low-level clouds over Sweden and Finland
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus Publications. - 1680-7316 .- 1680-7324. ; 14:22, s. 12167-12179
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol effects on low-level clouds over the Nordic Countries are investigated by combining in situ ground-based aerosol measurements with remote sensing data of clouds and precipitation. Ten years of number size distribution data from two aerosol measurement stations (Vavihill, Sweden and Hyytiälä, Finland) provide aerosol number concentrations in the atmospheric boundary layer. This is combined with cloud satellite data from the Moderate Resolution Imaging Spectroradiometer and weather radar data from the Baltic Sea Experiment. Also, how the meteorological conditions affect the clouds is investigated using reanalysis data from the European Centre for Medium-Range Weather Forecasts. The cloud droplet effective radius is found to decrease when the aerosol number concentration increases, while the cloud optical thickness does not vary with boundary layer aerosol number concentrations. Furthermore, the aerosol–cloud interaction parameter (ACI), a measure of how the effective radius is influenced by the number concentration of cloud active particles, is found to be somewhere between 0.10 and 0.18 and the magnitude of the ACI is greatest when the number concentration of particles with a diameter larger than 130 nm is used. Lower precipitation intensity in the weather radar images is associated with higher aerosol number concentrations. In addition, at Hyytiälä the particle number concentrations is generally higher for non-precipitating cases than for precipitating cases. The apparent absence of the first indirect effect of aerosols on low-level clouds over land raises questions regarding the magnitude of the indirect aerosol radiative forcing.
6.
  • Stiller, G.P., et al. (författare)
  • Global distribution of mean age of stratospheric air from MIPAS SF6 measurements
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Global distributions of profiles of sulphur hexafluoride (SF6) have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4-6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.230±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1σ standard error of 1%. From the global SF6 distributions, global daily andmonthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1σ standard error of 0.25 yr. They range between 0 (near the tropical tropopause) and 7 years (except for situations of mesospheric intrusions) and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH) and April/May (SH), respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further confirm that SF6 is destroyed in the mesosphere to a considerable degree. Model calculations with the Karlsruhe simulation model of the middle atmosphere (KASIMA) chemical transport model agree well with observed global distributions of the mean age only if the SF6 sink reactions in the mesosphere are included in the model.
  •  
7.
  • Wetzel, G., et al. (författare)
  • Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Water vapour (H2O) is one of the operationally retrieved key species of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the Environmental Satellite (ENVISAT) which was launched into its sun-synchronous orbit on 1 March 2002 and operated until April 2012. Within the MIPAS validation activities, independent observations from balloons, aircraft, satellites, and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational H2O data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. No significant bias in the MIPAS H2O data is seen in the lower stratosphere (above the hygropause) between about 15 and 30 km. Differences of H2O quantities observed by MIPAS and the validation instruments are mostly well within the combined total errors in this altitude region. In the upper stratosphere (above about 30 km), a tendency towards a small positive bias (up to about 10 %) is present in the MIPAS data when compared to its balloon-borne counterpart MIPAS-B, to the satellite instruments HALOE (Halogen Occultation Experiment) and ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer), and to the millimeter-wave airborne sensor AMSOS (Airborne Microwave Stratospheric Observing System). In the mesosphere the situation is unclear due to the occurrence of different biases when comparing HALOE and ACE-FTS data. Pronounced deviations between MIPAS and the correlative instruments occur in the lowermost stratosphere and upper troposphere, a region where retrievals of H2O are most challenging. Altogether it can be concluded that MIPAS H2O profiles yield valuable information on the vertical distribution of H2O in the stratosphere with an overall accuracy of about 10 to 30% and a precision of typically 5 to 15% - well within the predicted error budget, showing that these global and continuous data are very valuable for scientific studies. However, in the region around the tropopause retrieved MIPAS H2O profiles are less reliable, suffering from a number of obstacles such as retrieval boundary and cloud effects, sharp vertical discontinuities, and frequent horizontal gradients in both temperature and H2O volume mixing ratio (VMR). Some profiles are characterized by retrieval instabilities.
  •  
8.
  • Aas, W., et al. (författare)
  • Lessons learnt from the first EMEP intensive measurement periods
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 12:17, s. 8073-8094
  • Tidskriftsartikel (refereegranskat)abstract
    • The first EMEP intensive measurement periods were held in June 2006 and January 2007. The measurements aimed to characterize the aerosol chemical compositions, including the gas/aerosol partitioning of inorganic compounds. The measurement program during these periods included daily or hourly measurements of the secondary inorganic components, with additional measurements of elemental- and organic carbon (EC and OC) and mineral dust in PM1, PM2.5 and PM10. These measurements have provided extended knowledge regarding the composition of particulate matter and the temporal and spatial variability of PM, as well as an extended database for the assessment of chemical transport models. This paper summarise the first experiences of making use of measurements from the first EMEP intensive measurement periods along with EMEP model results from the updated model version to characterise aerosol composition. We investigated how the PM chemical composition varies between the summer and the winter month and geographically. The observation and model data are in general agreement regarding the main features of PM10 and PM2.5 composition and the relative contribution of different components, though the EMEP model tends to give slightly lower estimates of PM10 and PM2.5 compared to measurements. The intensive measurement data has identified areas where improvements are needed. Hourly concurrent measurements of gaseous and particulate components for the first time facilitated testing of modelled diurnal variability of the gas/aerosol partitioning of nitrogen species. In general, the modelled diurnal cycles of nitrate and ammonium aerosols are in fair agreement with the measurements, but the diurnal variability of ammonia is not well captured. The largest differences between model and observations of aerosol mass are seen in Italy during winter, which to a large extent may be explained by an underestimation of residential wood burning sources. It should be noted that both primary and secondary OC has been included in the calculations for the first time, showing promising results. Mineral dust is important, especially in southern Europe, and the model seems to capture the dust episodes well. The lack of measurements of mineral dust hampers the possibility for model evaluation for this highly uncertain PM component. There are also lessons learnt regarding improved measurements for future intensive periods. There is a need for increased comparability between the measurements at different sites. For the nitrogen compounds it is clear that more measurements using artefact free methods based on continuous measurement methods and/or denuders are needed. For EC/OC, a reference methodology (both in field and laboratory) was lacking during these periods giving problems with comparability, though measurement protocols have recently been established and these should be followed by the Parties to the EMEP Protocol. For measurements with no defined protocols, it might be a good solution to use centralised laboratories to ensure comparability across the network. To cope with the introduction of these new measurements, new reporting guidelines have been developed to ensure that all proper information about the methodologies and data quality is given.
9.
  • Abbatt, J. P. D., et al. (författare)
  • Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 12:14, s. 6237-6271
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of ice in the formation of chemically active halogens in the environment requires a full understanding because of its role in atmospheric chemistry, including controlling the regional atmospheric oxidizing capacity in specific situations. In particular, ice and snow are important for facilitating multiphase oxidative chemistry and as media upon which marine algae live. This paper reviews the nature of environmental ice substrates that participate in halogen chemistry, describes the reactions that occur on such substrates, presents the field evidence for ice-mediated halogen activation, summarizes our best understanding of ice-halogen activation mechanisms, and describes the current state of modeling these processes at different scales. Given the rapid pace of developments in the field, this paper largely addresses advances made in the past five years, with emphasis given to the polar boundary layer. The integrative nature of this field is highlighted in the presentation of work from the molecular to the regional scale, with a focus on understanding fundamental processes. This is essential for developing realistic parameterizations and descriptions of these processes for inclusion in larger scale models that are used to determine their regional and global impacts.
  •  
10.
  • Achtert, Peggy, 1982-, et al. (författare)
  • On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space-borne lidar
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316. ; 12:8, s. 3791-3798
  • Tidskriftsartikel (refereegranskat)abstract
    • The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
  •  
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (132)
Typ av publikation
tidskriftsartikel (269)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (270)
övrigt vetenskapligt (2)
Författare/redaktör
Kulmala, M. (33)
Murtagh, Donal P., 1 ... (29)
Swietlicki, Erik (26)
Urban, Joachim, 1964 ... (23)
Krejci, Radovan, (19)
Wiedensohler, A. (16)
visa fler...
Tjernström, Michael, (14)
Ström, Johan, (13)
Leck, Caroline, (13)
Höpfner, M. (13)
Petaja, T. (13)
Prevot, A. S. H. (12)
Simpson, David, 1961 ... (12)
Arneth, Almut (12)
Baltensperger, U. (12)
Eriksson, Patrick, 1 ... (12)
Kerminen, V. -M (12)
Walker, K. A. (11)
Blumenstock, T. (11)
Hase, F. (11)
Asmi, A. (11)
Tunved, Peter, (11)
Riipinen, Ilona, (10)
Mellqvist, Johan, 19 ... (10)
Coe, H. (10)
Nieminen, T. (10)
Fischer, H (10)
Milz, Mathias, (10)
Stiller, G.P. (10)
Yttri, K. E. (9)
Birmili, W. (9)
Bernath, P. F. (9)
Nilsson, Douglas, (9)
Svenningsson, Birgit ... (9)
Mahieu, E. (9)
Lihavainen, H. (9)
O'Dowd, C. (9)
Sellegri, K. (9)
Swietlicki, E. (9)
Glatthor, N. (9)
Schneider, M (8)
Simpson, D. (8)
Pandis, S. N. (8)
Laaksonen, A (8)
Weingartner, E. (8)
Aalto, P. P. (8)
Jennings, S. G. (8)
Boone, C. D. (8)
Stohl, A. (8)
Grabowski, U. (8)
visa färre...
Lärosäte
Stockholms universitet (127)
Lunds universitet (81)
Chalmers tekniska högskola (76)
Luleå tekniska universitet (25)
Göteborgs universitet (25)
Uppsala universitet (7)
visa fler...
Kungliga Tekniska Högskolan (3)
Örebro universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (269)
Odefinierat språk (1)
Ämne (HSV)
Naturvetenskap (85)
Teknik (10)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy