SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 ;pers:(Khosrawi Farahnaz)"

Sökning: L773:1680 7316 > Khosrawi Farahnaz

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achtert, Peggy, 1982-, et al. (författare)
  • On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space-borne lidar
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:8, s. 3791-3798
  • Tidskriftsartikel (refereegranskat)abstract
    • The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
  •  
2.
  • Baron, Phillippe, et al. (författare)
  • Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13, s. 6049-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking. We report observations of winds between 8 and 0.01 hPa (~35–80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35–60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30° S to 55° N and with a single profile precision of 7–9 m s−1 between 8 and 0.6 hPa and better than 20 m s−1 at altitudes above. The vertical resolution is 5–7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1–0.05 hPa, a mean difference <2 m s−1 is found between SMILES profiles retrieved from different spectroscopic lines and instrumental settings. Good agreement (mean difference of ~2 m s−1) is also found with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis in most of the stratosphere except for the zonal winds over the equator (mean difference of 5–10 m s−1). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (> 20 m s−1), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50° N–55° N during sudden stratospheric warmings in the stratosphere. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of ~20 m s−1). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
  •  
3.
  • Khosrawi, Farahnaz, et al. (författare)
  • Assessment of the interannual variability and influence of the QBO and upwelling on tracer-tracer distributions of N2O and O3 in the tropical lower stratosphere
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:7, s. 3619-3641
  • Tidskriftsartikel (refereegranskat)abstract
    • A modified form of tracer-tracer correlations of N2O and O3 has been used as a tool for the evaluation of atmospheric photochemical models. Applying this method monthly averages of N2O and O3 are derived for both hemispheres by partitioning the data into altitude (or potential temperature) bins and then averaging over a fixed interval of N2O. In a previous study, the method has been successfully applied to the validation of two Chemical Transport Models (CTMs) and one Chemistry-Climate Model (CCM) using 1-year climatology derived from the Odin Sub Millimetre Radiometer (Odin/SMR). However, the applicability of a 1-year climatology of monthly averages of N2O and O3 has been questioned due to the inability of some CCMs to simulate a specific year for the evaluation of CCMs. In this study, satellite measurements from Odin/SMR, the Aura Microwave Limb Sounder (Aura/MLS), the Michelson Interferometer for Passive Atmospheric Sounding on ENVISAT (ENVISAT/MIPAS), and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA-1 and CRISTA-2) as well as model simulations from the Whole Atmosphere Community Climate Model (WACCM) are considered. By using seven to eight years of satellite measurements derived between 2003 and 2010 from Odin/SMR, Aura/MLS, ENVISAT/MIPAS and six years of model simulations from WACCM the interannual variability of lower stratospheric monthly averages of N2O and O3 is assessed. It is shown that the interannual variability of the monthly averages of N2O and O3 is low and thus can be easily distinguished from model deficiencies. Further, it is investigated why large differences between Odin/SMR observations and model simulations from the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the atmospheric general circulation model ECHAM5/Messy1 are found for the Northern and Southern Hemisphere tropics (0° to 30° N and 0° to −30° S, respectively). The differences between model simulations and observations are most likely caused by an underestimation of the quasi-biennial oscillation and tropical upwelling by the models as well as due to biases and/or instrument noise from the satellite instruments. Finally, an inter-comparison between Odin/SMR, Aura/MLS, ENVISAT/MIPAS and WACCM was performed. The comparison shows that these data sets are generally in good agreement but that also some known biases of the data sets are clearly visible in the monthly averages, thus showing that this method is not only a valuable tool for model evaluation but also for satellite inter-comparisons.
  •  
4.
  • Khosrawi, Farahnaz, et al. (författare)
  • Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:16, s. 8471-8487
  • Tidskriftsartikel (refereegranskat)abstract
    • The sedimentation of HNO3 containing PolarStratospheric Cloud (PSC) particles leads to a permanent re-moval of HNO3 and thus to a denitrification of the strato-sphere, an effect which plays an important role in strato-spheric ozone depletion. The polar vortex in the Arctic win-ter 2009/2010 was very cold and stable between end of De-cember and end of January. Strong denitrification between 475 to 525 K was observed in the Arctic in mid of Januaryby the Odin Sub Millimetre Radiometer (Odin/SMR). Thiswas the strongest denitrification that had been observed inthe entire Odin/SMR measuring period (2001–2010). Lidarmeasurements of PSCs were performed in the area of Kiruna,Northern Sweden with the IRF (Institutet för Rymdfysik) li-odar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kirunaduring the entire period of observations. The formation ofPSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulationsare performed along air parcel trajectories calculated sixdays backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperaturehistory of the backward trajectories and the box model simulations we find two PSC regions, one over Kiruna accordingto the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model  trajectories together with the observations of Odin/SMR,Aura/MLS (Microwave Limb Sounder), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)and the ground-based lidar we investigate how and by whichtype of PSC particles the denitrification that was observedduring the Arctic winter 2009/2010 was caused. From ouranalysis we find that due to an unusually strong synopticcooling event in mid January, ice particle formation on NATmay be a possible formation mechanism during that particu-lar winter that may have caused the denitrification observed in mid January. In contrast, the denitrification that was observed in the beginning of January could have been caused by the sedimentation of NAT particles that formed on moun-tain wave ice clouds.
  •  
5.
  • Khosrawi, Farahnaz, 1971-, et al. (författare)
  • Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:15, s. 5759-5783
  • Tidskriftsartikel (refereegranskat)abstract
    • 1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived from satellite measurements were used as a tool for the evaluation of atmospheric photochemical models. Two 1-year data sets, one solar occultation data set derived from the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) and one limb sounding data set derived from the Odin Sub-Millimetre Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evaluation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chemistry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the entire hemisphere, the evaluation is performed for the entire hemisphere as well as for the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set as reference. To assess the impact of using different data sets for such an evaluation study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as a reference, thus, showing that the results are not influenced by the particular satellite data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows that all models are in agreement with Odin/SMR and ILAS/ILAS-II. Differences are generally in the range of ±20%. Larger differences (up to −40%) are found in all models at 500±25 K for N2O mixing ratios greater than 200 ppbv, thus in air masses of tropical character. Generally, the largest differences were found for the tropics and the lowest for the polar regions. However, an underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both in the Northern and Southern Hemisphere.
  •  
6.
  • Khosrawi, Farahnaz, et al. (författare)
  • Particle formation in the Arctic free troposphere during the ASTAR 2004 campaign: A case study on the influence of vertical motion on the binary homogeneous nucleation of H2SO4/H2O
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10, s. 1105-1120
  • Tidskriftsartikel (refereegranskat)abstract
    • During the ASTAR (Arctic Study of Tropospheric Aerosol and Radiation) campaign nucleation mode particles (4 to 13 nm) were quite frequently observed at altitudes below 4000 m. However, in the upper free troposphere, nucleation mode particles were only observed once, namely during the flight on 24 May 2004 (7000 m). To investigate if vertical motion are the reason for this difference that on one particular day nucleation mode particles were observed but not on the other days we employ a microphysical box model. The box model simulations were performed along air parcel trajectories calculated 6-d backwards based on European Center for Medium-Range Weather Forecasts (ECMWF) meteorological analyses using state parameters such as pressure and temperature in combination with additional parameters such as vertical stability. Box model simulations were performed for the 24 May where nucleation mode particles were observed (nucleation event) as well as for the day with measurements before and after (22 and 26 May) which are representative for no nucleation (none nucleation event). A nucleation burst was simulated along all trajectories, however, in the majority of the simulations the nucleation rate was either too low or too high so that no nucleation mode particles were left at the time were the measurements were performed. Further, the simulation results could be divided into three cases. Thereby, we found that for case 1 the temperature was the only driving mechanism while for case 2 and 3 vertical motion have influenced the formation of new particles. The reason why nucleation mode particles were observed on 24 May, but not on the other day, can be explained by the conditions under which particle formation occurred. On 24 May the particle formation was caused by a slow updraft, while on the other two days the particle formation was caused by a fast updraft.
  •  
7.
  • von Hobe, M, et al. (författare)
  • Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:18, s. 9233-9268
  • Tidskriftsartikel (refereegranskat)abstract
    • The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistryclimate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
  •  
8.
  • Weigel, Katja, et al. (författare)
  • A stratospheric intrusion at the subtropical jet over the Mediterranean Sea : air-borne remote sensing observations and model results
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:18, s. 8423-8438
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing measurements from the Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers (CRISTA-NF) during a flight on 29 July 2006 are presented. This flight is part of the AMMA-SCOUT-O3 measurement campaign, where CRISTA-NF was deployed on the high-flying research aircraft M55-Geophysica. The flight path was located over Italy and the Mediterranean Sea and crossed over the subtropical jet twice. Measurements of temperature, and the volume mixing ratios of water vapor (H2O), ozone (O3), nitric acid (HNO3) and peroxyacetyl nitrate (PAN) are available with a vertical resolution of up to 500 m between about 6 to 21 km altitude. CRISTA-NF observes these trace gases simultaneously and provides a quasi-2-D view of the transition region between the troposphere and the stratosphere. The observation of these different trace gases allows to determine tropospheric and stratospheric air masses. As expected, higher abundances are found where the main source of the trace gases is located: in the stratosphere for O3 and in the troposphere for H2O and PAN. Tracer-tracer correlations between O3 and PAN are used to identify the mixed tropospheric and lowermost stratospheric air at the subtropical jet and around the thermal tropopause north of the jet. An intrusion of stratospheric air into the troposphere associated with the subtropical jet is found in the CRISTA-NF observations. The observations indicate that the intrusion is connected to a tropopause fold which is not resolved in the ECMWF analysis data. The intrusion was reproduced in a simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The CLaMS simulation shows, that the lowermost stratospheric air masses in the intrusion where transported along the the subtropical jet. The tropospheric air masses around the intrusion originate from the vicinity of the Asian monsoon anticyclone. This work discusses the nature of the observed processes at the subtropical jet based on the CRISTA-NF observations and the CLaMS simulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy