Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 ;pers:(Mellqvist Johan 1965);pers:(Servais C.)"

Sökning: L773:1680 7316 > Mellqvist Johan 1965 > Servais C.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • Angelbratt, Jon, 1981-, et al. (författare)
  • Carbon monoxide (CO) and ethane (C2H6) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 11:17, s. 9253-9269
  • Tidskriftsartikel (refereegranskat)abstract
    • Trends in the CO and C(2)H(6) partial columns (similar to 0-15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996-2006 time period. The CO trends from the four stations Jungfraujoch, Zugspitze, Harestua and Kiruna have been estimated to -0.45 +/- 0.16%yr(-1), -1.00 +/- 0.24%yr(-1), -0.62 +/- 0.19%yr(-1) and -0.61 +/- 0.16%yr(-1), respectively. The corresponding trends for C(2)H(6) are -1.51 +/- 0.23%yr(-1), -2.11 +/- 0.30%yr(-1), -1.09 +/- 0.25%yr(-1) and -1.14 +/- 0.18%yr(-1). All trends are presented with their 2-sigma confidence intervals. To find possible reasons for the CO trends, the global-scale EMEP MSC-W chemical transport model has been used in a series of sensitivity scenarios. It is shown that the trends are consistent with the combination of a 20% decrease in the anthropogenic CO emissions seen in Europe and North America during the 1996-2006 period and a 20% increase in the anthropogenic CO emissions in East Asia, during the same time period. The possible impacts of CH(4) and biogenic volatile organic compounds (BVOCs) are also considered. The European and global-scale EMEP models have been evaluated against the measured CO and C(2)H(6) partial columns from Jungfraujoch, Zugspitze, Bremen, Harestua, Kiruna and Ny-Alesund. The European model reproduces, on average the measurements at the different sites fairly well and within 10-22% deviation for CO and 14-31% deviation for C(2)H(6). Their seasonal amplitude is captured within 6-35% and 9-124% for CO and C(2)H(6), respectively. However, 61-98% of the CO and C(2)H(6) partial columns in the European model are shown to arise from the boundary conditions, making the global-scale model a more suitable alternative when modeling these two species. In the evaluation of the global model the average partial columns for 2006 are shown to be within 1-9% and 37-50% of the measurements for CO and C(2)H(6), respectively. The global model sensitivity for assumptions made in this paper is also analyzed.
  • Vigouroux, C., et al. (författare)
  • Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 8, s. 6865-6886
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network), six ground-based stations in Western Europe, from 79 degrees N to 28 degrees N, all equipped with Fourier Transform infrared (FTIR) instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995-2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O-3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar). The observed total column ozone trends are in agreement with previous studies: 1) no total column ozone trend is seen at the lowest latitude station Izana (28 degrees N); 2) slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47 degrees N), only one of them being significant; 3) the highest latitude stations Harestua (60 degrees N), Kiruna (68 degrees N) and Ny-Alesund (79 degrees N) show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10-18 km, 18-27 km, and 27-42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lower-most stratosphere at the two mid-latitude stations, and at Ny-Alesund. We find smaller, but significant trends for the 18 27 km layer at Kiruna, Harestua, Jungfraujoch, and Izana. The results for the upper layer are quite contrasted: we find significant positive trends at Kiruna, Harestua, and Jungfraujoch, and significant negative trends at Zugspitze and Izana. These ozone partial columns trends are discussed and compared with previous studies.
  • Vigouroux, C., et al. (författare)
  • Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 15:6, s. 2915-2933
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2% but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5-6 %. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Alesund (79 degrees N), Thule (77 degrees N), Kiruna (68 degrees N), Harestua (60 degrees N), Jungfraujoch (47 degrees N), Izana (28 degrees N), Wollongong (34 degrees S) and Lauder (45 degrees S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 +/- 1.0% decade(-1)). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy