SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1748 9326 OR L773:1748 9326 ;conttype:(refereed)"

Sökning: L773:1748 9326 OR L773:1748 9326 > Refereegranskat

  • Resultat 1-10 av 294
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlström, Anders, et al. (författare)
  • Primary productivity of managed and pristine forests in Sweden
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Land use is affecting 70% of global ecosystems and their functioning. Forest management is a regionally dominant land use and affects forest ecosystems by changing both structure and functioning, but its impact on primary productivity is not well known. Here we investigated the effect of forest management on primary productivity by comparing managed secondary forests with relatively pristine unmanaged primary forests in Sweden. As proxy for primary productivity we used the satellite-based vegetation index NIRv which has been shown to be closely and linearly related to primary productivity. We produced a digital map of 390 primary forests across Sweden, and extracted NIRv over these and surrounding secondary forests forming spatially proximate pairs. By comparing the primary and secondary forests NIRv in the pairs we found that secondary forests on average show higher NIRv, but the highest values were found in primary forests. The difference in NIRv between pairs is related to their difference in mean stand age, and at equal stand age the NIRv of primary forests is higher than in their paired secondary forests. Overall, management leads to increased NIRv through regeneration of forests stands that reduce their mean age. However, primary forests show higher NIRv when controlling for age, despite being found on higher altitudes and on steeper slopes with lower soil moisture, which suggests that forest management other than regeneration is not increasing primary productivity of Swedish forests.
  •  
2.
  • Akperov, Mirseid, et al. (författare)
  • Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic cyclones, as a prevalent feature in the coupled dynamics of the Arctic climate system, have large impacts on the atmospheric transport of heat and moisture and deformation and drifting of sea ice. Previous studies based on historical and future simulations with climate models suggest that Arctic cyclogenesis is affected by the Arctic amplification of global warming, for instance, a growing land-sea thermal contrast. We thus hypothesize that biogeophysical feedbacks (BF) over the land, here mainly referring to the albedo-induced warming in spring and evaporative cooling in summer, may have the potential to significantly change cyclone activity in the Arctic. Based on a regional Earth system model (RCA-GUESS) which couples a dynamic vegetation model and a regional atmospheric model and an algorithm of cyclone detection and tracking, this study assesses for the first time the impacts of BF on the characteristics of Arctic cyclones under three IPCC Representative Concentration Pathways scenarios (i.e. RCP2.6, RCP4.5 and RCP8.5). Our analysis focuses on the spring- and summer time periods, since previous studies showed BF are the most pronounced in these seasons. We find that BF induced by changes in surface heat fluxes lead to changes in land-sea thermal contrast and atmospheric stability. This, in turn, noticeably changes the atmospheric baroclinicity and, thus, leads to a change of cyclone activity in the Arctic, in particular to the increase of cyclone frequency over the Arctic Ocean in spring. This study highlights the importance of accounting for BF in the prediction of Arctic cyclones and the role of circulation in the Arctic regional Earth system.
  •  
3.
  • Birkmann, Joern, et al. (författare)
  • Regional clusters of vulnerability show the need for transboundary cooperation
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 16:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing vulnerability is essential for adaptation to climate change. Compared to approaches that examine vulnerability to a specific hazard, our analysis offers an alternative perspective that conceptualizes vulnerability to climate change as a phenomenon that is independent of any specific type of hazard but relevant to multiple hazards. Vulnerability is thus a product of structural inequality and systemic in nature. Based on two established index systems, we perform global analyses of specific phenomena - such as poverty, access to basic infrastructure services and forced migration - that influence and determine vulnerability. Our statistical and spatial analyses reveal an emerging pattern of climate vulnerability within regional clusters and shows that vulnerability is a transboundary issue, crossing political, sectorial and geographical borders and impacting shared resources. The spatial statistical hotspot analysis of vulnerability underscores that hotspots, for example of high vulnerability, state fragility, low biodiversity protection or forced migration, emerge in multi-country clusters. This aspect has often been overlooked, most attention to-date having been given to the positioning of individual countries within vulnerability rankings. In hotspots such as in the Sahel, East and Central Africa, as well as in Southern Asia and Central America, vulnerability is interwoven with high levels of state fragility, making adaptation solutions more complex. The recognition of the regional clusters and the transboundary nature of vulnerability calls for new research and action on how to strengthen transboundary approaches for vulnerability reduction, potentially enhancing prospects for successful adaptation.
  •  
4.
  • Boysen, Lena R., et al. (författare)
  • Evaluation of soil carbon dynamics after forest cover change in CMIP6 land models using chronosequences
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Land surface models are used to provide global estimates of soil organic carbon (SOC) changes after past and future change land use change (LUC), in particular re-/deforestation. To evaluate how well the models capture decadal-scale changes in SOC after LUC, we provide the first consistent comparison of simulated time series of LUC by six land models all of which participated in the coupled model intercomparison project phase 6 (CMIP6) with soil carbon chronosequences (SCCs). For this comparison we use SOC measurements of adjacent plots at four high-quality data sites in temperate and tropical regions. We find that initial SOC stocks differ among models due to different approaches to represent SOC. Models generally meet the direction of SOC change after reforestation of cropland but the amplitude and rate of changes vary strongly among them. The normalized root mean square errors of the multi model mean range from 0.5 to 0.8 across sites and 0.1-0.7 when excluding outliers. Further, models simulate SOC losses after deforestation for crop or grassland too slow due to the lack of crop harvest impacts in the models or an overestimation of the SOC recovery on grassland. The representation of management, especially nitrogen levels is important to capture drops in SOC after land abandonment for forest regrowth. Crop harvest and fire management are important to match SOC dynamics but more difficult to quantify as SCC rarely report on these events. Based on our findings, we identify strengths and propose potential improvements of the applied models in simulating SOC changes after LUC.
  •  
5.
  • Cai, Z., et al. (författare)
  • Amplified wintertime Barents Sea warming linked to intensified Barents oscillation
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades, the Barents Sea has warmed more than twice as fast as the rest of the Arctic in winter, but the exact causes behind this amplified warming remain unclear. In this study, we quantify the wintertime Barents Sea warming (BSW, for near-surface air temperature) with an average linear trend of 1.74 °C decade-1 and an interdecadal change around 2003 based on a surface energy budget analysis using the ERA5 reanalysis dataset from 1979-2019. Our analysis suggests that the interdecadal change in the wintertime near-surface air temperature is dominated by enhanced clear-sky downward longwave radiation (CDLW) associated with increased total column water vapor. Furthermore, it is found that a mode of atmospheric variability over the North Atlantic region known as the Barents oscillation (BO) strongly contributed to the BSW with a stepwise jump in 2003. Since 2003, the BO turned into a strengthened and positive phase, characteristic of anomalous high pressure over the North Atlantic and South of the Barents Sea, which promoted two branches of heat and moisture transport from southern Greenland along the Norwegian Sea and from the Eurasian continent to the Barents Sea. This enhanced the water vapor convergence over the Barents Sea, resulting in BSW through enhanced CDLW. Our results highlight the atmospheric circulation related to the BO as an emerging driver of the wintertime BSW through enhanced meridional atmospheric heat and moisture transport over the North Atlantic Ocean.
  •  
6.
  • Ito, Akihiko, et al. (författare)
  • Soil carbon sequestration simulated in CMIP6-LUMIP models : Implications for climatic mitigation
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change affects both the quality and quantity of soil organic carbon (SOC) and leads to changes in ecosystem functions such as productivity and environmental regulation. Future changes in SOC are, however, highly uncertain owing to its heterogeneity and complexity. In this study, we analyzed the outputs of simulations of SOC stock by Earth system models (ESMs), most of which are participants in the Land-Use Model Intercomparison Project. Using a common protocol and the same forcing data, the ESMs simulated SOC distribution patterns and their changes during historical (1850-2014) and future (2015-2100) periods. Total SOC stock increased in many simulations over the historical period (30 ± 67 Pg C) and under future climate and land-use conditions (48 ± 32 Pg C for ssp126 and 49 ± 58 Pg C for ssp370). Land-use experiments indicated that changes in SOC attributable to land-use scenarios were modest at the global scale, in comparison with climatic and rising CO2 impacts, but they were notable in several regions. Future net soil carbon sequestration rates estimated by the ESMs were roughly 0.4‰ yr-1 (0.6 Pg C yr-1). Although there were considerable inter-model differences, the rates are still remarkable in terms of their potential for mitigation of global warming. The disparate results among ESMs imply that key parameters that control processes such as SOC residence time need to be better constrained and that more comprehensive representation of land management impacts on soils remain critical for understanding the long-term potential of soils to sequester carbon.
  •  
7.
  • Johansson, Emma, et al. (författare)
  • Foreign demand for agricultural commodities drives virtual carbon exports from Cambodia
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid deforestation is a major sustainability challenge, partly as the loss of carbon sinks exacerbates global climate change. In Cambodia, more than 13% of the total land area has been contracted out to foreign and domestic agribusinesses in the form of economic land concessions, causing rapid large-scale land use change and deforestation. Additionally, the distant drivers of local and global environmental change often remain invisible. Here, we identify hotspots of carbon loss between 1987-2017 using the dynamic global vegetation model LPJ-GUESS and by comparing past and present land use and land cover. We also link global consumption and production patterns to their environmental effects in Cambodia by mapping the countries to which land-use embedded carbon are exported. We find that natural forests have decreased from 54%-21% between 1987 and 2017, mainly for the expansion of farmland and orchards, translating into 300 million tons of carbon lost, with loss rates over twice as high within economic land concessions. China is the largest importer of embedded carbon, mainly for rubber and sugarcane from Chinese agribusinesses. Cambodian investors have also negatively affected carbon pools through export-oriented products like rubber. The combined understanding of environmental change and trade flows makes it possible to identify distant drivers of deforestation, which is important for crafting more environmentally and socially responsible policies on national and transnational scales.
  •  
8.
  • Kaminski, Thomas, et al. (författare)
  • Assimilation of atmospheric CO2observations from space can support national CO2emission inventories
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Paris Agreement establishes a transparency framework for anthropogenic carbon dioxide (CO2) emissions. It's core component are inventory-based national greenhouse gas emission reports, which are complemented by independent estimates derived from atmospheric CO2 measurements combined with inverse modelling. It is, however, not known whether such a Monitoring and Verification Support (MVS) capacity is capable of constraining estimates of fossil-fuel emissions to an extent that is sufficient to provide valuable additional information. The CO2 Monitoring Mission (CO2M), planned as a constellation of satellites measuring column-integrated atmospheric CO2 concentration (XCO2), is expected to become a key component of such an MVS capacity. Here we provide a novel assessment of the potential of a comprehensive data assimilation system using simulated XCO2 and other observations to constrain fossil fuel CO2 emission estimates for an exemplary 1-week period in 2008. We find that CO2M enables useful weekly estimates of country-scale fossil fuel emissions independent of national inventories. When extrapolated from the weekly to the annual scale, uncertainties in emissions are comparable to uncertainties in inventories, so that estimates from inventories and from the MVS capacity can be used for mutual verification. We further demonstrate an alternative, synergistic mode of operation, with the purpose of delivering a best fossil fuel emission estimate. In this mode, the assimilation system uses not only XCO2 and the other data streams of the previous (verification) mode, but also the inventory information. Finally, we identify further steps towards an operational MVS capacity.
  •  
9.
  • Lee, Heera, et al. (författare)
  • Three billion new trees in the EU’s biodiversity strategy : low ambition, but better environmental outcomes?
  • 2023
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The EU Biodiversity strategy aims to plant 3 billion trees by 2030, in order to improve ecosystem restoration and biodiversity. Here, we compute the land area that would be required to support this number of newly planted trees by taking account of different tree species and planting regimes across the EU member states. We find that 3 billion trees would require a total land area of between 0.81 and 1.37 Mha (avg. 1.02 Mha). The historic forest expansion in the EU since 2010 was 2.44 Mha, meaning that despite 3 billion trees sounding like a large number this target is considerably lower than historic afforestation rates within the EU, i.e. only 40% of the past trend. Abandoned agricultural land is often proposed as providing capacity for afforestation. We estimate agricultural abandoned land areas from the HIstoric Land Dynamics Assessment+ database using two time thresholds (abandonment since 2009 or 2014) to identify potential areas for tree planting. The area of agricultural abandoned land was 2.6 Mha (potentially accommodating 7.2 billion trees) since 2009 and 0.2 Mha (potentially accommodating 741 million trees) since 2014. Our study highlights that sufficient space could be available to meet the 3 billion tree planting target from abandoned land. However, large-scale afforestation beyond abandoned land could have displacement effects elsewhere in the world because of the embodied deforestation in the import of agricultural crops and livestock. This would negate the expected benefits of EU afforestation. Hence, the EU’s relatively low ambition on tree planting may actually be better in terms of avoiding such displacement effects. We suggest that tree planting targets should be set at a level that considers physical ecosystem dynamics as well as socio-economic conditions.
  •  
10.
  • López-Blanco, Efrén, et al. (författare)
  • Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic tundra is a globally important store for carbon (C). However, there is a lack of reference sites characterising C exchange dynamics across annual cycles. Based on the Greenland Ecosystem Monitoring (GEM) programme, here we present 9-11 years of flux and ecosystem data across the period 2008-2018 from two wetland sites in Greenland: Zackenberg (74°N) and Kobbefjord (64°N). The Zackenberg fen was a strong C sink despite its higher latitude and shorter growing seasons compared to the Kobbefjord fen. On average the ecosystem in Zackenberg took up ∼-50 g C m-2 yr-1 (range of +21 to-90 g C m-2 yr-1), more than twice that of Kobbefjord (mean ∼-18 g C m-2 yr-1, and range of +41 to-41 g C m-2 yr-1). The larger net carbon sequestration in Zackenberg fen was associated with higher leaf nitrogen (71%), leaf area index (140%), and plant quality (i.e. C:N ratio; 36%). Additional evidence from in-situ measurements includes 3 times higher levels of dissolved organic carbon in soils and 5 times more available plant nutrients, including dissolved organic nitrogen (N) and nitrates, in Zackenberg. Simulations using the soil-plant-atmosphere ecosystem model showed that Zackenberg's stronger CO2 sink could be related to measured differences in plant nutrients, and their effects on photosynthesis and respiration. The model explained 69% of the variability of net ecosystem exchange of CO2, 80% for photosynthesis and 71% for respiration over 11 years at Zackenberg, similar to previous results at Kobbefjord (73%, 73%, and 50%, respectively, over 8 years). We conclude that growing season limitations of plant phenology on net C uptake have been more than counterbalanced by the increased leaf nutrient content at the Zackenberg site.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 294
Typ av publikation
tidskriftsartikel (279)
forskningsöversikt (15)
Typ av innehåll
Författare/redaktör
Chen, Deliang, 1961 (16)
Ahlström, Anders (11)
Smith, Benjamin (9)
Destouni, Georgia (7)
Laudon, Hjalmar (6)
Vico, Giulia (6)
visa fler...
Rockström, Johan (6)
Nicholas, Kimberly A ... (6)
Lund, Magnus (5)
Lindroth, Anders (5)
Scaini, Anna (5)
Manzoni, Stefano (5)
Persson, Martin, 197 ... (5)
Hugelius, Gustaf (4)
Ciais, Philippe (4)
Futter, Martyn (4)
Schurgers, Guy (4)
Fetzer, Ingo (4)
Krusic, Paul J. (4)
Johansson, Daniel, 1 ... (4)
Büntgen, Ulf (4)
Pugh, Thomas A M (4)
Christensen, Torben (4)
Messori, Gabriele (4)
aut (3)
Abbott, Benjamin W. (3)
McGuire, A. David (3)
Christensen, Torben ... (3)
Gough, Laura (3)
Kuhry, Peter (3)
Molau, Ulf, 1951 (3)
Nilsson, Mats (3)
Ardö, Jonas (3)
Seaquist, Jonathan (3)
Schmidt, Niels Marti ... (3)
Di Baldassarre, Giul ... (3)
Bommarco, Riccardo (3)
Cornell, Sarah E. (3)
Koenigk, Torben (3)
Lyon, Steve W. (3)
Korkovelos, Alexandr ... (3)
Howells, Mark I. (3)
Esper, Jan (3)
Donges, Jonathan (3)
Jewell, Jessica, 198 ... (3)
Björk, Robert G., 19 ... (3)
Müller, Christoph (3)
Olofsson, Johan (3)
Desai, Ankur R. (3)
Crona, Beatrice (3)
visa färre...
Lärosäte
Stockholms universitet (96)
Lunds universitet (73)
Sveriges Lantbruksuniversitet (48)
Göteborgs universitet (34)
Uppsala universitet (26)
Umeå universitet (24)
visa fler...
Chalmers tekniska högskola (21)
Kungliga Tekniska Högskolan (12)
Linköpings universitet (12)
Luleå tekniska universitet (4)
Mittuniversitetet (4)
IVL Svenska Miljöinstitutet (4)
Högskolan i Gävle (2)
Linnéuniversitetet (2)
RISE (2)
Högskolan i Halmstad (1)
Handelshögskolan i Stockholm (1)
Karolinska Institutet (1)
Högskolan Dalarna (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (294)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (243)
Lantbruksvetenskap (41)
Samhällsvetenskap (31)
Teknik (23)
Medicin och hälsovetenskap (3)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy