SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1748 9326 OR L773:1748 9326 ;pers:(Ahlström Anders)"

Sökning: L773:1748 9326 OR L773:1748 9326 > Ahlström Anders

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlström, Anders, et al. (författare)
  • Primary productivity of managed and pristine forests in Sweden
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Land use is affecting 70% of global ecosystems and their functioning. Forest management is a regionally dominant land use and affects forest ecosystems by changing both structure and functioning, but its impact on primary productivity is not well known. Here we investigated the effect of forest management on primary productivity by comparing managed secondary forests with relatively pristine unmanaged primary forests in Sweden. As proxy for primary productivity we used the satellite-based vegetation index NIRv which has been shown to be closely and linearly related to primary productivity. We produced a digital map of 390 primary forests across Sweden, and extracted NIRv over these and surrounding secondary forests forming spatially proximate pairs. By comparing the primary and secondary forests NIRv in the pairs we found that secondary forests on average show higher NIRv, but the highest values were found in primary forests. The difference in NIRv between pairs is related to their difference in mean stand age, and at equal stand age the NIRv of primary forests is higher than in their paired secondary forests. Overall, management leads to increased NIRv through regeneration of forests stands that reduce their mean age. However, primary forests show higher NIRv when controlling for age, despite being found on higher altitudes and on steeper slopes with lower soil moisture, which suggests that forest management other than regeneration is not increasing primary productivity of Swedish forests.
  •  
2.
  • Lu, Zhengyao, et al. (författare)
  • Natural decadal variability of global vegetation growth in relation to major decadal climate modes
  • 2023
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326 .- 1748-9318. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing climate change can modulate the behavior of global vegetation and influence the terrestrial biosphere carbon sink. Past observation-based studies have mainly focused on the linear trend or interannual variability of the vegetation greenness, but could not explicitly deal with the effect of natural decadal variability due to the short length of observations. Here we put the variabilities revealed by remote sensing-based global leaf area index (LAI) from 1982 to 2015 into a long-term perspective with the help of ensemble Earth system model simulations of the historical period 1850-2014, with a focus on the low-frequency variability in the global LAI during the growing season. Robust decadal variability in the observed and modelled LAI was revealed across global terrestrial ecosystems, and it became stronger toward higher latitudes, accounting for over 50% of the total variability north of 40 degrees N. The linkage of LAI decadal variability to major natural decadal climate modes, such as the El Nino-Southern Oscillation decadal variability (ENSO-d), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO), was analyzed. ENSO-d affects LAI by altering precipitation over large parts of tropical land. The PDO exerts opposite impacts on LAI in the tropics and extra-tropics due to the compensation between the effects of temperature and growing season length. The AMO effects are mainly associated with anomalous precipitation in North America and Europe but are mixed with long-term climate change impacts due to the coincident phase shift of the AMO which also induces North Atlantic basin warming. Our results suggest that the natural decadal variability of LAI can be largely explained by these decadal climate modes (on average 20% of the variance, comparable to linear changes, and over 40% in some ecosystems) which also can be potentially important in inducing the greening of the Earth of the past decades.
  •  
3.
  • Ahlström, Anders, et al. (författare)
  • Importance of vegetation dynamics for future terrestrial carbon cycling
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
  •  
4.
  • Ahlström, Anders, et al. (författare)
  • The large influence of climate model bias on terrestrial carbon cycle simulations
  • 2017
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Global vegetation models and terrestrial carbon cycle models are widely used for projecting the carbon balance of terrestrial ecosystems. Ensembles of such models show a large spread in carbon balance predictions, ranging from a large uptake to a release of carbon by the terrestrial biosphere, constituting a large uncertainty in the associated feedback to atmospheric CO 2 concentrations under global climate change. Errors and biases that may contribute to such uncertainty include ecosystem model structure, parameters and forcing by climate output from general circulation models (GCMs) or the atmospheric components of Earth system models (ESMs), e.g. as prepared for use in IPCC climate change assessments. The relative importance of these contributing factors to the overall uncertainty in carbon cycle projections is not well characterised. Here we investigate the role of climate model-derived biases by forcing a single global ecosystem-carbon cycle model, with original climate outputs from 15 ESMs and GCMs from the CMIP5 ensemble. We show that variation among the resulting ensemble of present and future carbon cycle simulations propagates from biases in annual means of temperature, precipitation and incoming shortwave radiation. Future changes in carbon pools, and thus land carbon sink trends, are also affected by climate biases, although to a smaller extent than the absolute size of carbon pools. Our results suggest that climate biases could be responsible for a considerable fraction of the large uncertainties in ESM simulations of land carbon fluxes and pools, amounting to about 40% of the range reported for ESMs. We conclude that climate bias-induced uncertainties must be decreased to make accurate coupled atmosphere-carbon cycle projections.
  •  
5.
  • Guan, Kaiyu, et al. (författare)
  • Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ∼ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ∼4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability - 'chronic water stress', 'acute water stress' and 'minimum water stress' - which are respectively associated with three broad spatial patterns of African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.
  •  
6.
  • Li, Zhao, et al. (författare)
  • Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern lands (>50° N) since 1960s. However, the correlation between vegetation growth, temperature and seasonal amplitude of atmospheric CO2 concentration have become elusive with the slowed increasing trend of vegetation growth and weakened temperature control on CO2 uptake since late 1990s. Here, based on in situ atmospheric CO2 concentration records from the Barrow observatory site, we found a slowdown in the increasing trend of the atmospheric CO2 amplitude from 1990s to mid-2000s. This phenomenon was associated with the paused decrease in the minimum CO2 concentration ([CO2]min), which was significantly correlated with the slowdown of vegetation greening and growing-season length extension. We then showed that both the vegetation greenness and growing-season length were positively correlated with spring but not autumn temperature over the northern lands. Furthermore, such asymmetric dependences of vegetation growth upon spring and autumn temperature cannot be captured by the state-of-art terrestrial biosphere models. These findings indicate that the responses of vegetation growth to spring and autumn warming are asymmetric, and highlight the need of improving autumn phenology in the models for predicting seasonal cycle of atmospheric CO2 concentration.
  •  
7.
  • Wolf, Julika, et al. (författare)
  • Canopy responses of Swedish primary and secondary forests to the 2018 drought
  • 2023
  • Ingår i: Environmental Research Letters. - 1748-9326. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal forest ecosystems are predicted to experience more frequent summer droughts due to climate change, posing a threat to future forest health and carbon sequestration. Forestry is a regionally dominant land use where the managed secondary forests are typically even-aged forests with low structural and tree species diversity. It is not well known if managed secondary forests and unmanaged primary forests respond to drought differently in part because the location of primary, unmanaged, forests has remained largely unknown. Here we employed a unique map detailing over 300 primary forests in Sweden. We studied impacts of the 2018 nationwide drought by extracting and analyzing a high-resolution remote sensing vegetation index over the primary forests and over buffer zones around the primary forests representing secondary forests. We controlled for topographical variations linked to soil moisture, which was a strong determinant of drought responses, and analyzed Landsat-derived EVI2 anomalies during the drought year from a multiyear non-drought baseline. We found that primary forests were less affected by the drought compared to secondary forests. Our results indicate that forestry may exacerbate the impact of drought in a future climate with more frequent and extreme hydroclimatic events.
  •  
8.
  • Wu, Minchao, et al. (författare)
  • Impacts of land use on climate and ecosystem productivity over the Amazon and the South American continent
  • 2017
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amazon basin is characterized by a strong interplay between the atmosphere and vegetation. Anthropogenic land use and land cover change (LULCC) affects vegetation and the exchange of energy and water with the atmosphere. Here we have assessed potential LULCC impacts on climate and natural vegetation dynamics over South America with a regional Earth system model that also accounts for vegetation dynamics. The biophysical and biogeochemical impacts from LULCC were addressed with two simulations over the CORDEX-South America domain. The results show that LULCC imposes local and remote influences on South American climate. These include significant local warming over the LULCC-affected area, changes in circulation patterns over the Amazon basin during the dry season, and an intensified hydrological cycle over much of the LULCC-affected area during the wet season. These changes affect the natural vegetation productivity which shows contrasting and significant changes between northwestern (around 10% increase) and southeastern (up to 10% decrease) parts of the Amazon basin caused by mesoscale circulation changes during the dry season, and increased productivity in parts of the LULCC-affected areas. We conclude that ongoing deforestation around the fringes of the Amazon could impact pristine forest by changing mesoscale circulation patterns, amplifying the degradation of natural vegetation caused by direct, local impacts of land use activities.
  •  
9.
  • Wu, Zhendong, et al. (författare)
  • Climate data induced uncertainty in model-based estimations of terrestrial primary productivity
  • 2017
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Model-based estimations of historical fluxes and pools of the terrestrial biosphere differ substantially. These differences arise not only from differences between models but also from differences in the environmental and climatic data used as input to the models. Here we investigate the role of uncertainties in historical climate data by performing simulations of terrestrial gross primary productivity (GPP) using a process-based dynamic vegetation model (LPJ-GUESS) forced by six different climate datasets. We find that the climate induced uncertainty, defined as the range among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 11 Pg C yr-1 globally (9 % of mean GPP). We also assessed a hypothetical maximum climate data induced uncertainty by combining climate variables from different datasets, which resulted in significantly larger uncertainties of 41 Pg C yr-1 globally or 32 % of mean GPP. The uncertainty is partitioned into components associated to the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (climate data range) and the apparent sensitivity of the modeled GPP to the driver (apparent model sensitivity). We find that LPJ-GUESS overestimates GPP compared to empirically based GPP data product in all land cover classes except for tropical forests. Tropical forests emerge as a disproportionate source of uncertainty in GPP estimation both in the simulations and empirical data products. The tropical forest uncertainty is most strongly associated with shortwave radiation and precipitation forcing, of which climate data range contributes higher to overall uncertainty than apparent model sensitivity to forcing. Globally, precipitation dominates the climate induced uncertainty over nearly half of the vegetated land area, which is mainly due to climate data range and less so due to the apparent model sensitivity. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than apparent model sensitivity to forcing. Our study highlights the need to better constrain tropical climate, and demonstrates that uncertainty caused by climatic forcing data must be considered when comparing and evaluating carbon cycle model results and empirical datasets.
  •  
10.
  • Ahlström, Anders, et al. (författare)
  • Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections
  • 2012
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the spatio-temporal carbon balance patterns resulting from forcing a dynamic global vegetation model with output from 18 climate models of the CMIP5 (Coupled Model Intercomparison Project Phase 5) ensemble. We found robust patterns in terms of an extra-tropical loss of carbon, except for a temperature induced shift in phenology, leading to an increased spring uptake of carbon. There are less robust patterns in the tropics, a result of disagreement in projections of precipitation and temperature. Although the simulations generally agree well in terms of the sign of the carbon balance change in the middle to high latitudes, there are large differences in the magnitude of the loss between simulations. Together with tropical uncertainties these discrepancies accumulate over time, resulting in large differences in total carbon uptake over the coming century (−0.97–2.27 Pg C yr −1 during 2006–2100). The terrestrial biosphere becomes a net source of carbon in ten of the 18 simulations adding to the atmospheric CO 2 concentrations, while the remaining eight simulations indicate an increased sink of carbon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy