SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1748 9326 OR L773:1748 9326 ;pers:(Lund Magnus)"

Sökning: L773:1748 9326 OR L773:1748 9326 > Lund Magnus

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Box, Jason E., et al. (författare)
  • Key indicators of Arctic climate change: 1971–2017
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Key observational indicators of climate change in the Arctic, most spanning a 47 year period (1971–2017) demonstrate fundamental changes among nine key elements of the Arctic system. We find that, coherent with increasing air temperature, there is an intensification of the hydrological cycle, evident from increases in humidity, precipitation, river discharge, glacier equilibrium line altitude and land ice wastage. Downward trends continue in sea ice thickness (and extent) and spring snow cover extent and duration, while near-surface permafrost continues to warm. Several of the climate indicators exhibit a significant statistical correlation with air temperature or precipitation, reinforcing the notion that increasing air temperatures and precipitation are drivers of major changes in various components of the Arctic system. To progress beyond a presentation of the Arctic physical climate changes, we find a correspondence between air temperature and biophysical indicators such as tundra biomass and identify numerous biophysical disruptions with cascading effects throughout the trophic levels. These include: increased delivery of organic matter and nutrients to Arctic near‐coastal zones; condensed flowering and pollination plant species periods; timing mismatch between plant flowering and pollinators; increased plant vulnerability to insect disturbance; increased shrub biomass; increased ignition of wildfires; increased growing season CO2 uptake, with counterbalancing increases in shoulder season and winter CO2 emissions; increased carbon cycling, regulated by local hydrology and permafrost thaw; conversion between terrestrial and aquatic ecosystems; and shifting animal distribution and demographics. The Arctic biophysical system is now clearly trending away from its 20th Century state and into an unprecedented state, with implications not only within but beyond the Arctic. The indicator time series of this study are freely downloadable at AMAP.no.
  •  
2.
  • Parmentier, Frans Jan W., et al. (författare)
  • Vulnerability and resilience of the carbon exchange of a subarctic peatland to an extreme winter event
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme winter events that damage vegetation are considered an important climatic cause of arctic browning - a reversal of the greening trend of the region - and possibly reduce the carbon uptake of northern ecosystems. Confirmation of a reduction in CO2 uptake due to winter damage, however, remains elusive due to a lack of flux measurements from affected ecosystems. In this study, we report eddy covariance fluxes of CO2 from a peatland in northern Norway and show that vegetation CO2 uptake was delayed and reduced in the summer of 2014 following an extreme winter event earlier that year. Strong frost in the absence of a protective snow cover - its combined intensity unprecedented in the local climate record - caused severe dieback of the dwarf shrub species Calluna vulgaris and Empetrum nigrum. Similar vegetation damage was reported at the time along ∼1000 km of coastal Norway, showing the widespread impact of this event. Our results indicate that gross primary production (GPP) exhibited a delayed response to temperature following snowmelt. From snowmelt up to the peak of summer, this reduced carbon uptake by 14 (0-24) g C m-2 (∼12% of GPP in that period) - similar to the effect of interannual variations in summer weather. Concurrently, remotely-sensed NDVI dropped to the lowest level in more than a decade. However, bulk photosynthesis was eventually stimulated by the warm and sunny summer, raising total GPP. Species other than the vulnerable shrubs were probably resilient to the extreme winter event. The warm summer also increased ecosystem respiration, which limited net carbon uptake. This study shows that damage from a single extreme winter event can have an ecosystem-wide impact on CO2 uptake, and highlights the importance of including winter-induced shrub damage in terrestrial ecosystem models to accurately predict trends in vegetation productivity and carbon sequestration in the Arctic and sub-Arctic.
  •  
3.
  • Lund, Magnus, et al. (författare)
  • Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland
  • 2012
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought is arguably the most important regulator of inter-annual variation in net ecosystem CO2 exchange (NEE) in peatlands. This study investigates effects of drought periods on NEE and its components, gross primary production (GPP) and ecosystem respiration (R-eco), on the basis of eddy covariance measurements of land-atmosphere exchange of CO2 in 2006-2009 in a south Swedish nutrient-poor peatland. Two drought periods had dissimilar effects on the CO2 exchange. In 2006, there was a short but severe drought period in the middle of the growing season resulting in increased R-eco rates, but no detectable effect on GPP rates. In contrast, in 2008 the drought period began early in the growing season and lasted for a longer period of time, resulting in reduced GPP rates, suggesting that GPP is most sensitive to drought during leaf out and canopy development compared with the full canopy stage. Both in 2006 and in 2008 the peatland acted as an annual source of atmospheric CO2, while in 2007 and 2009, when there were no drought periods, the peatland constituted a CO2 sink. It was concluded that the timing, severity and duration of drought periods regulate the effects on peatland GPP, R-eco and NEE.
  •  
4.
  • Lund, Magnus, et al. (författare)
  • Low impact of dry conditions on the CO2 exchange of a Northern-Norwegian blanket bog
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation and C sink functioning. This study presents a 4.5 year record of land-atmosphere carbon dioxide (CO2) exchange from the Andoya blanket bog in northern Norway. Compared with other peatlands, the Andoya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on the CO2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andoya blanket bog retained its C uptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate.
  •  
5.
  • Kropp, Heather, et al. (författare)
  • Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy