SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1752 0894 OR L773:1752 0908 ;pers:(Muscheler Raimund)"

Sökning: L773:1752 0894 OR L773:1752 0908 > Muscheler Raimund

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolphi, Florian, et al. (författare)
  • Persistent link between solar activity and Greenland climate during the Last Glacial Maximum
  • 2014
  • Ingår i: Nature Geoscience. - 1752-0908 .- 1752-0894. ; 7:9, s. 662-666
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in solar activity have previously been proposed to cause decadal- to millennial-scale fluctuations in both the modern and Holocene climates(1). Direct observational records of solar activity, such as sunspot numbers, exist for only the past few hundred years, so solar variability for earlier periods is typically reconstructed from measurements of cosmogenic radionuclides such as Be-10 and C-14 from ice cores and tree rings(2,3). Here we present a high-resolution Be-10 record from the ice core collected from central Greenland by the Greenland Ice Core Project (GRIP). The record spans from 22,500 to 10,000 years ago, and is based on new and compiled data(4-6). Using C-14 records(7,8) to control for climate-related influences on Be-10 deposition, we reconstruct centennial changes in solar activity. We find that during the Last Glacial Maximum, solar minima correlate with more negative delta O-18 values of ice and are accompanied by increased snow accumulation and sea-salt input over central Greenland. We suggest that solar minima could have induced changes in the stratosphere that favour the development of high-pressure blocking systems located to the south of Greenland, as has been found in observations and model simulations for recent climate(9,10). We conclude that the mechanism behind solar forcing of regional climate change may have been similar under both modern and Last Glacial Maximum climate conditions.
  •  
2.
  • Brehm, Nicolas, et al. (författare)
  • Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14:1, s. 10-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sun provides the principal energy input into the Earth system and solar variability represents a significant external climate forcing. Although observations of solar activity (sunspots) cover only the last about 400 years, radionuclides produced by cosmic rays and stored in tree rings or ice cores serve as proxies for solar activity extending back thousands of years. However, the presence of weather-induced noise or low temporal resolution of long, precisely dated records hampers cosmogenic nuclide-based studies of short-term solar variability such as the 11-yr Schwabe cycle. Here we present a continuous, annually resolved atmospheric 14C concentration (fractionation-corrected ratio of 14CO2 to CO2) record reconstructed from absolutely dated tree rings covering nearly all of the last millennium (ad 969–1933). The high-resolution and precision 14C record reveals the presence of the Schwabe cycle over the entire time range. The record confirms the ad 993 solar energetic particle event and reveals two new candidates (ad 1052 and ad 1279), indicating that strong solar events that might be harmful to modern electronic systems probably occur more frequently than previously thought. In addition to showing decadal-scale solar variability over the last millennium, the high-temporal-resolution record of atmospheric radiocarbon also provides a useful benchmark for making radiocarbon dating more accurate over this interval.
  •  
3.
  • Martin-Puertas, Celia, et al. (författare)
  • Regional atmospheric circulation shifts induced by a grand solar minimum
  • 2012
  • Ingår i: Nature Geoscience. - 1752-0908 .- 1752-0894. ; 5:6, s. 397-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Large changes in solar ultraviolet radiation can indirectly affect climate(1) by inducing atmospheric changes. Specifically, it has been suggested that centennial-scale climate variability during the Holocene epoch was controlled by the Sun(2,3). However, the amplitude of solar forcing is small when compared with the climatic effects and, without reliable data sets, it is unclear which feedback mechanisms could have amplified the forcing. Here we analyse annually laminated sediments of Lake Meerfelder Maar, Germany, to derive variations in wind strength and the rate of Be-10 accumulation, a proxy for solar activity, from 3,300 to 2,000 years before present. We find a sharp increase in windiness and cosmogenic Be-10 deposition 2,759 +/- 39 varve years before present and a reduction in both entities 199 +/- 9 annual layers later. We infer that the atmospheric circulation reacted abruptly and in phase with the solar minimum. A shift in atmospheric circulation in response to changes in solar activity is broadly consistent with atmospheric circulation patterns in long-term climate model simulations, and in reanalysis data that assimilate observations from recent solar minima into a climate model. We conclude that changes in atmospheric circulation amplified the solar signal and caused abrupt climate change about 2,800 years ago, coincident with a grand solar minimum.
  •  
4.
  • Muscheler, Raimund (författare)
  • Palaeoclimate: The enigmatic 1,500-year cycle
  • 2012
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 5:12, s. 850-851
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Muscheler, Raimund, et al. (författare)
  • Tree rings and ice cores reveal C-14 calibration uncertainties during the Younger Dryas
  • 2008
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 1:4, s. 263-267
  • Tidskriftsartikel (refereegranskat)abstract
    • The Younger Dryas interval during the Last Glacial Termination was an abrupt return to glacial-like conditions punctuating the transition to a warmer, interglacial climate. Despite recent advances in the layer counting of ice-core records of the termination, the timing and length of the Younger Dryas remain controversial. Also, a steep rise in the concentration of atmospheric radiocarbon at the onset of the interval, recorded primarily in the Cariaco Basin, has been difficult to reconcile with simulations of the Younger Dryas carbon cycle. Here we discuss a radiocarbon chronology from a tree-ring record covering the Late Glacial period that has not been absolutely dated. We correlate the chronology to ice-core timescales using the common cosmic production signal in tree-ring C-14 and ice-core Be-10 concentrations. The results of this correlation suggest that the Cariaco record may be biased by changes in the concentration of radiocarbon in the upper ocean during the early phase of the Younger Dryas climate reversal in the Cariaco basin. This bias in the marine record may also affect the accuracy of a widely used radiocarbon calibration curve over this interval. Our tree-ring-based radiocarbon record is easily reconciled with simulated production rates and carbon-cycle changes associated with reduced ocean ventilation during the Younger Dryas.
  •  
6.
  • Sirocko, Frank, et al. (författare)
  • Muted multidecadal climate variability in central Europe during cold stadial periods
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14, s. 651-658
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last ice age, the Northern Hemisphere experienced a series of abrupt millennial-scale climatic changes linked to variations in the strength of the Atlantic Meridional Overturning Circulation and sea-ice extent. However, our understanding of their impacts on decadal-scale climate variability in central Europe has been limited by the lack of high-resolution continental archives. Here, we present a near annual-resolution climate proxy record of central European temperature reconstructed from the Eifel maar lakes of Holzmaar and Auel in Germany, spanning the past 60,000 years. The lake sediments reveal a series of previously undocumented multidecadal climate cycles of around 20 to 150 years that persisted through the last glacial cycle. The periodicity of these cycles suggests that they are related to the Atlantic multidecadal climate oscillations found in the instrumental record and in other climate archives during the Holocene. Our record shows that multidecadal variability in central Europe was strong during all warm interstadials, but was substantially muted during all cold stadial periods. We suggest that this decrease in multidecadal variability was the result of the atmospheric circulation changes associated with the weakening of the Atlantic Meridional Overturning Circulation and the expansion of North Atlantic sea-ice cover during the coldest parts of the last ice age.
  •  
7.
  • Nilsson, Andreas, et al. (författare)
  • Holocene solar activity inferred from global and hemispherical cosmic-ray proxy records
  • 2024
  • Ingår i: Nature Geoscience. - 1752-0894. ; 17:7, s. 654-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in solar activity have been proposed to play an important role in recent and past climate change. To study this link on longer timescales, it is essential to know how the Sun has varied over the past millennia. Direct observations of solar variability based on sunspot numbers are limited to the past 400 years, and beyond this we rely on records of cosmogenic radionuclides, such as 14C and 10Be in tree rings and ice cores. Their atmospheric production rates depend on the flux of incoming galactic cosmic rays, which is modulated by Earth’s and the Sun’s magnetic fields, the latter being linked to solar variability. Here we show that accounting for differences in hemispherical production rates, related to geomagnetic field asymmetries, helps resolve so far unexplained differences in Holocene solar activity reconstructions. We find no compelling evidence for long-term variations in solar activity and show that variations in cosmogenic radionuclide production rates on millennial timescales and longer, including the 2,400-year Hallstatt cycle, are explained by variations in the geomagnetic field. Our results also suggest an on-average stronger dipole moment during the Holocene, associated with higher field intensities in the Southern Hemisphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy