SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1759 6653 OR L773:1759 6653 ;conttype:(refereed)"

Sökning: L773:1759 6653 OR L773:1759 6653 > Refereegranskat

  • Resultat 1-10 av 133
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allen, James E., et al. (författare)
  • Assessing the State of Substitution Models Describing Noncoding RNA Evolution
  • 2014
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653 .- 1759-6653. ; 6:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenetic inference is widely used to investigate the relationships between homologous sequences. RNA molecules have played a key role in these studies because they are present throughout life and tend to evolve slowly. Phylogenetic inference has been shown to be dependent on the substitution model used. A wide range of models have been developed to describe RNA evolution, either with 16 states describing all possible canonical base pairs or with 7 states where the 10 mismatched nucleotides are reduced to a single state. Formal model selection has become a standard practice for choosing an inferential model and works well for comparing models of a specific type, such as comparisons within nucleotide models or within amino acid models. Model selection cannot function across different sized state spaces because the likelihoods are conditioned on different data. Here, we introduce statistical state-space projection methods that allow the direct comparison of likelihoods between nucleotide models and 7-state and 16-state RNA models. To demonstrate the general applicability of our new methods, we extract 287 RNA families from genomic alignments and perform model selection. We find that in 281/287 families, RNA models are selected in preference to nucleotide models, with simple 7-state RNA models selected for more conserved families with shorter stems and more complex 16-state RNA models selected for more divergent families with longer stems. Other factors, such as the function of the RNA molecule or the GC-content, have limited impact on model selection. Our models and model selection methods are freely available in the open-source software.
  •  
2.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex
  • 2024
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.
  •  
3.
  • Baiao, Guilherme Costa, 1984-, et al. (författare)
  • Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653 .- 1759-6653. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
  •  
4.
  • Barata, Carolina, et al. (författare)
  • Selection on the Fly : Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila pseudoobscura
  • 2023
  • Ingår i: Genome Biology and Evolution. - 1759-6653 .- 1759-6653. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations' genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size-N-e-between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate N-e to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines.
  •  
5.
  • Barrett, C. F., et al. (författare)
  • Ancient Polyploidy and Genome Evolution in Palms
  • 2019
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 11:5, s. 1501-1511
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of genome evolution are fundamental to our understanding of adaptation and the generation and maintenance of biodiversity, yet genome dynamics are still poorly characterized in many clades. Strong correlations between variation in genomic attributes and species diversity across the plant tree of life suggest that polyploidy or other mechanisms of genome size change confer selective advantages due to the introduction of genomic novelty. Palms (order Arecales, family Arecaceae) are diverse, widespread, and dominant in tropical ecosystems, yet little is known about genome evolution in this ecologically and economically important clade. Here, we take a phylogenetic comparative approach to investigate palm genome dynamics using genomic and transcriptomic data in combination with a recent, densely sampled, phylogenetic tree. We find conclusive evidence of a paleopolyploid event shared by the ancestor of palms but not with the sister clade, Dasypogonales. We find evidence of incremental chromosome number change in the palms as opposed to one of recurrent polyploidy. We find strong phylogenetic signal in chromosome number, but no signal in genome size, and further no correlation between the two when correcting for phylogenetic relationships. Palms thus add to a growing number of diverse, ecologically successful clades with evidence of whole-genome duplication, sister to a species-poor clade with no evidence of such an event. Disentangling the causes of genome size variation in palms moves us closer to understanding the genomic conditions facilitating adaptive radiation and ecological dominance in an evolutionarily successful, emblematic tropical clade.
  •  
6.
  • Bartke, Katrin, et al. (författare)
  • Evolution of Bacterial Interspecies Hybrids with Enlarged Chromosomes
  • 2022
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653 .- 1759-6653. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugation driven by a chromosomally integrated F-plasmid (high frequency of recombination strain) can create bacteria with hybrid chromosomes. Previous studies of interspecies hybrids have focused on hybrids in which a region of donor chromosome replaces an orthologous region of recipient chromosome leaving chromosome size unchanged. Very little is known about hybrids with enlarged chromosomes, the mechanisms of their creation, or their subsequent trajectories of adaptative evolution. We addressed this by selecting 11 interspecies hybrids between Escherichia coli and Salmonella Typhimurium in which genome size was enlarged. In three cases, this occurred by the creation of an F '-plasmid while in the remaining eight, it was due to recombination of donor DNA into the recipient chromosome. Chromosome length increased by up to 33% and was associated in most cases with reduced growth fitness. Two hybrids, in which chromosome length was increased by the addition of 0.97 and 1.3 Mb, respectively, were evolved to study genetic pathways of fitness cost amelioration. In each case, relative fitness rapidly approached one and this was associated with large deletions involving recombination between repetitive DNA sequences. The locations of these repetitive sequences played a major role in determining the architecture of the evolved genotypes. Notably, in ten out of ten independent evolution experiments, deletions removed DNA of both species, creating high-fitness strains with hybrid chromosomes. In conclusion, we found that enlargement of a bacterial chromosome by acquisition of diverged orthologous DNA is followed by a period of rapid evolutionary adjustment frequently creating irreversibly hybrid chromosomes.
  •  
7.
  • Bascon-Cardozo, Karen, et al. (författare)
  • Fine-Scale Map Reveals Highly Variable Recombination Rates Associated with Genomic Features in the Eurasian Blackcap
  • 2024
  • Ingår i: Genome Biology and Evolution. - 1759-6653 .- 1759-6653. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium–based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.
  •  
8.
  • Bellieny-Rabelo, Daniel, et al. (författare)
  • Novel Two-Component System-Like Elements Reveal Functional Domains Associated with Restriction-Modification Systems and paraMORC ATPases in Bacteria
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653 .- 1759-6653. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-component systems (TCS) are important types of machinery allowing for efficient signal recognition and transmission in bacterial cells. The majority of TCSs utilized by bacteria is composed of a sensor histidine kinase (HK) and a cognate response regulator (RR). In the present study, we report two newly predicted protein domains-both to be included in the next release of the Pfam database: Response_reg_2 (PF19192) and HEF_HK (PF19191)-in bacteria which exhibit high structural similarity, respectively, with typical domains of RRs and HKs. Additionally, the genes encoding for the novel predicted domains exhibit a 91.6% linkage observed across 644 genomic regions recovered from 628 different bacterial strains. The remarkable adjacent colocalization between genes carrying Response_reg_2 and HEF_HK in addition to their conserved structural features, which are highly similar to those from well-known HKs and RRs, raises the possibility of Response_reg_2 and HEF_HK constituting a new TCS in bacteria. The genomic regions in which these predicted two-component systems-like are located additionally exhibit an overrepresented presence of restriction-modification (R-M) systems especially the type II R-M. Among these, there is a conspicuous presence of C-5 cytosine-specific DNA methylases which may indicate a functional association with the newly discovered domains. The solid presence of R-M systems and the presence of the GHKL family domain HATPase_c_3 across most of the HEF_HK-containing genes are also indicative that these genes are evolutionarily related to the paraMORC family of ATPases.
  •  
9.
  • Bendixsen, Devin P., et al. (författare)
  • Genomic Evidence of an Ancient East Asian Divergence Event in Wild Saccharomyces cerevisiae
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653 .- 1759-6653. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative genome analyses have suggested East Asia to be the cradle of the domesticated microbe Brewer's yeast (Saccharomyces cerevisiae), used in the food and biotechnology industry worldwide. Here, we provide seven new, high-quality long-read genomes of nondomesticated yeast strains isolated from primeval forests and other natural environments in China and Taiwan. In a comprehensive analysis of our new genome assemblies, along with other long-read Saccharomycetes genomes available, we show that the newly sequenced East Asians trains are amongthe closest living relatives of the ancestors of the global diversity of Brewer's yeast, confirming predictionsmade from short-read genomic data. Three of these strains (termed the East Asian Clade IX Complex here) share a recent ancestry and evolutionary history suggesting an early divergence from other S. cerevisiae strains before the larger radiation of the species, and prior to its domestication. Our genomic analyses reveal that the wild East Asian strains contain elevated levels of structural variations. The new genomic resources provided here contribute to our understanding of the natural diversity of S. cerevisiae, expand the intraspecific genetic variation found in this heavily domesticated microbe, and provide a foundation for understanding its origin and global colonization history.
  •  
10.
  • Bensch, Staffan, et al. (författare)
  • The genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites
  • 2016
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 8:5, s. 73-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 133
Typ av publikation
tidskriftsartikel (132)
forskningsöversikt (1)
Typ av innehåll
Författare/redaktör
Suh, Alexander (8)
Wheat, Christopher W ... (7)
Ellegren, Hans (6)
Backström, Niclas, 1 ... (6)
Slotte, Tanja (5)
Andersson, Siv G. E. (5)
visa fler...
Ingvarsson, Pär K (3)
Stairs, Courtney W (3)
Andersson, Leif (3)
Ruiz-Ruano, Francisc ... (3)
Ray, David A. (3)
Jakobsson, Mattias (3)
Klasson, Lisa (3)
Arnqvist, Göran, 196 ... (3)
Sayadi, Ahmed (3)
Immonen, Elina (3)
Webster, Matthew Tho ... (3)
Steward, Rachel A. (3)
Wolf, Jochen B. W. (2)
Kirsebom, Leif A. (2)
Baldauf, Sandra L. (2)
Carneiro, Miguel (2)
Whelan, Simon (2)
Ettema, Thijs J. G. (2)
Dekker, Teun (2)
Johannesson, Hanna (2)
Glemin, Sylvain (2)
Wang, Xiao-Ru (2)
Wiklund, Christer (2)
Rubin, Carl-Johan (2)
Andersson, Siv (2)
Höglund, Jacob (2)
Brandis, Gerrit, 198 ... (2)
Pawlowski, Katharina (2)
Revadi, Santosh (2)
Behra, Phani Rama Kr ... (2)
Ramesh, Malavika (2)
Das, Sarbashis (2)
Dasgupta, Santanu (2)
Friberg, Magne (2)
Sun, Yu (2)
Quilez, Javier (2)
Tunström, Kalle (2)
Mugal, Carina F (2)
Boman, Jesper (2)
Vila, Roger (2)
Lundberg, Max (2)
Pettersson, B M Fred ... (2)
Vasquez, Alejandra (2)
Spang, Anja (2)
visa färre...
Lärosäte
Uppsala universitet (77)
Stockholms universitet (23)
Lunds universitet (19)
Sveriges Lantbruksuniversitet (15)
Umeå universitet (10)
Göteborgs universitet (6)
visa fler...
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (2)
Naturhistoriska riksmuseet (2)
Örebro universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (133)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (124)
Medicin och hälsovetenskap (6)
Lantbruksvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy