SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1759 6653 OR L773:1759 6653 ;lar1:(uu)"

Sökning: L773:1759 6653 OR L773:1759 6653 > Uppsala universitet

  • Resultat 1-10 av 86
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allen, James E., et al. (författare)
  • Assessing the State of Substitution Models Describing Noncoding RNA Evolution
  • 2014
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 6:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenetic inference is widely used to investigate the relationships between homologous sequences. RNA molecules have played a key role in these studies because they are present throughout life and tend to evolve slowly. Phylogenetic inference has been shown to be dependent on the substitution model used. A wide range of models have been developed to describe RNA evolution, either with 16 states describing all possible canonical base pairs or with 7 states where the 10 mismatched nucleotides are reduced to a single state. Formal model selection has become a standard practice for choosing an inferential model and works well for comparing models of a specific type, such as comparisons within nucleotide models or within amino acid models. Model selection cannot function across different sized state spaces because the likelihoods are conditioned on different data. Here, we introduce statistical state-space projection methods that allow the direct comparison of likelihoods between nucleotide models and 7-state and 16-state RNA models. To demonstrate the general applicability of our new methods, we extract 287 RNA families from genomic alignments and perform model selection. We find that in 281/287 families, RNA models are selected in preference to nucleotide models, with simple 7-state RNA models selected for more conserved families with shorter stems and more complex 16-state RNA models selected for more divergent families with longer stems. Other factors, such as the function of the RNA molecule or the GC-content, have limited impact on model selection. Our models and model selection methods are freely available in the open-source software.
  •  
2.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex
  • 2024
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.
  •  
3.
  • Atag, Gözde, et al. (författare)
  • Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages
  • 2024
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (N-e). Meanwhile, N-e and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term N-e, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
  •  
4.
  • Baiao, Guilherme Costa, 1984-, et al. (författare)
  • Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
  •  
5.
  • Bartke, Katrin, et al. (författare)
  • Evolution of Bacterial Interspecies Hybrids with Enlarged Chromosomes
  • 2022
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugation driven by a chromosomally integrated F-plasmid (high frequency of recombination strain) can create bacteria with hybrid chromosomes. Previous studies of interspecies hybrids have focused on hybrids in which a region of donor chromosome replaces an orthologous region of recipient chromosome leaving chromosome size unchanged. Very little is known about hybrids with enlarged chromosomes, the mechanisms of their creation, or their subsequent trajectories of adaptative evolution. We addressed this by selecting 11 interspecies hybrids between Escherichia coli and Salmonella Typhimurium in which genome size was enlarged. In three cases, this occurred by the creation of an F '-plasmid while in the remaining eight, it was due to recombination of donor DNA into the recipient chromosome. Chromosome length increased by up to 33% and was associated in most cases with reduced growth fitness. Two hybrids, in which chromosome length was increased by the addition of 0.97 and 1.3 Mb, respectively, were evolved to study genetic pathways of fitness cost amelioration. In each case, relative fitness rapidly approached one and this was associated with large deletions involving recombination between repetitive DNA sequences. The locations of these repetitive sequences played a major role in determining the architecture of the evolved genotypes. Notably, in ten out of ten independent evolution experiments, deletions removed DNA of both species, creating high-fitness strains with hybrid chromosomes. In conclusion, we found that enlargement of a bacterial chromosome by acquisition of diverged orthologous DNA is followed by a period of rapid evolutionary adjustment frequently creating irreversibly hybrid chromosomes.
  •  
6.
  • Bensch, Staffan, et al. (författare)
  • The genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites
  • 2016
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 8:5, s. 73-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits.
  •  
7.
  • Berglund, Jonas, et al. (författare)
  • Germ line Methylation Patterns Determine the Distribution of Recombination Events in the Dog Genome
  • 2015
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 7:2, s. 522-530
  • Tidskriftsartikel (refereegranskat)abstract
    • The positive-regulatory domain containing nine gene, PROMO, which strongly associates with the location of recombination events in several vertebrates, is inferred to be inactive in the dog genome. Here, we address several questions regarding the control of recombination and its influence on genome evolution in dogs. First, we address whether the association between CpG islands (CGIs) and recombination hotspots is generated by lack of methylation, GC-biased gene conversion (gBGC), or both. Using a genome-wide dog single nucleotide polymorphism data set and comparisons of the dog genome with related species, we show that recombination-associated CGIs have low CpG mutation rates, and that CpG mutation rate is negatively correlated with recombination rate genome wide, indicating that nonmethylation attracts the recombination machinery. We next use a neighbor-dependent model of nucleotide substitution to disentangle the effects of CpG mutability and gBGC and analyze the effects that loss of PROMO has on these rates. We infer that methylation patterns have been stable during canid genome evolution, but that dog CGIs have experienced a drastic increase in substitution rate due to gBGC, consistent with increased levels of recombination in these regions. We also show that gBGC is likely to have generated many new CGIs in the dog genome, but these mostly occur away from genes, whereas the number of C GIs in gene promoter regions has not increased greatly in recent evolutionary history. Recombination has a major impact on the distribution of CGIs that are detected in the dog genome due to the interaction between methylation and gBGC. The results indicate that germline methylation patterns are the main determinant of recombination rates in the absence of PRDM9.
  •  
8.
  •  
9.
  • Bisch, Gaelle, et al. (författare)
  • Genome Evolution of Bartonellaceae Symbionts of Ants at the Opposite Ends of the Trophic Scale
  • 2018
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 10:7, s. 1687-1704
  • Tidskriftsartikel (refereegranskat)abstract
    • Many insects rely on bacterial symbionts to supply essential amino acids and vitamins that are deficient in their diets, but metabolic comparisons of closely related gut bacteria in insects with different dietary preferences have not been performed. Here, we demonstrate that herbivorous ants of the genus Dolichoderus from the Peruvian Amazon host bacteria of the family Bartonellaceae, known for establishing chronic or pathogenic infections in mammals. We detected these bacteria in all studied Dolichoderus species, and found that they reside in the midgut wall, that is, the same location as many previously described nutritional endosymbionts of insects. The genomic analysis of four divergent strains infecting different Dolichoderus species revealed genes encoding pathways for nitrogen recycling and biosynthesis of several vitamins and all essential amino acids. In contrast, several biosynthetic pathways have been lost, whereas genes for the import and conversion of histidine and arginine to glutamine have been retained in the genome of a closely related gut bacterium of the carnivorous ant Harpegnathos saltator. The broad biosynthetic repertoire in Bartonellaceae of herbivorous ants resembled that of gut bacteria of honeybees that likewise feed on carbohydrate-rich diets. Taken together, the broad distribution of Bartonellaceae across Dolichoderus ants, their small genome sizes, the specific location within hosts, and the broad biosynthetic capability suggest that these bacteria are nutritional symbionts in herbivorous ants. The results highlight the important role of the host nutritional biology for the genomic evolution of the gut microbiota-and conversely, the importance of the microbiota for the nutrition of hosts.
  •  
10.
  • Boman, Jesper, et al. (författare)
  • The Effects of GC-Biased Gene Conversion on Patterns of Genetic Diversity among and across Butterfly Genomes
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants. Bias in favor of G or C alleles during gene conversion may instead promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased gene conversion (gBGC). Less recognized is that these two processes may-when balanced-promote genetic diversity. Here, we investigate how gBGC and mutation bias shape genetic diversity patterns in wood white butterflies (Leptidea sp.). This constitutes the first in-depth investigation of gBGC in butterflies. Using 60 resequenced genomes from six populations of three species, we find substantial variation in the strength of gBGC across lineages. When modeling the balance of gBGC and mutation bias and comparing analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection. Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 86
Typ av publikation
tidskriftsartikel (86)
Typ av innehåll
refereegranskat (85)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Suh, Alexander (9)
Ellegren, Hans (6)
Andersson, Siv G. E. (6)
Backström, Niclas, 1 ... (6)
Andersson, Leif (4)
Ruiz-Ruano, Francisc ... (4)
visa fler...
Webster, Matthew Tho ... (4)
Stairs, Courtney W (3)
Slotte, Tanja (3)
Ray, David A. (3)
Jakobsson, Mattias (3)
Klasson, Lisa (3)
Andersson, Siv (3)
Arnqvist, Göran, 196 ... (3)
Sayadi, Ahmed (3)
Immonen, Elina (3)
Wolf, Jochen B. W. (2)
Kirsebom, Leif A. (2)
Wallberg, Andreas (2)
Pettersson, Mats (2)
Baldauf, Sandra L. (2)
Vural, Kıvılcım Başa ... (2)
Somel, Mehmet (2)
Carneiro, Miguel (2)
Whelan, Simon (2)
Ettema, Thijs J. G. (2)
Özer, Füsun (2)
Johannesson, Hanna (2)
Bunikis, Ignas (2)
Glemin, Sylvain (2)
Wiklund, Christer (2)
Rubin, Carl-Johan (2)
Dias, Guilherme, 198 ... (2)
Höglund, Jacob (2)
Kaptan, Damla (2)
Morell Miranda, Pedr ... (2)
Brandis, Gerrit, 198 ... (2)
Behra, Phani Rama Kr ... (2)
Ramesh, Malavika (2)
Das, Sarbashis (2)
Dasgupta, Santanu (2)
Friberg, Magne (2)
Sun, Yu (2)
Näslund, Kristina (2)
Quilez, Javier (2)
Mugal, Carina F (2)
Boman, Jesper (2)
Vila, Roger (2)
Pettersson, B M Fred ... (2)
Olofsson, Tobias (2)
visa färre...
Lärosäte
Stockholms universitet (9)
Lunds universitet (8)
Sveriges Lantbruksuniversitet (3)
Umeå universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (86)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (79)
Medicin och hälsovetenskap (4)
Teknik (1)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy