SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1759 6653 OR L773:1759 6653 ;pers:(Backström Niclas 1969)"

Sökning: L773:1759 6653 OR L773:1759 6653 > Backström Niclas 1969

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boman, Jesper, et al. (författare)
  • The Effects of GC-Biased Gene Conversion on Patterns of Genetic Diversity among and across Butterfly Genomes
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants. Bias in favor of G or C alleles during gene conversion may instead promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased gene conversion (gBGC). Less recognized is that these two processes may-when balanced-promote genetic diversity. Here, we investigate how gBGC and mutation bias shape genetic diversity patterns in wood white butterflies (Leptidea sp.). This constitutes the first in-depth investigation of gBGC in butterflies. Using 60 resequenced genomes from six populations of three species, we find substantial variation in the strength of gBGC across lineages. When modeling the balance of gBGC and mutation bias and comparing analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection. Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.
  •  
2.
  • Höglund, Jacob, et al. (författare)
  • A Chromosome-Level Genome Assembly and Annotation for the Clouded Apollo Butterfly (Parnassius mnemosyne) : A Species of Global Conservation Concern
  • 2024
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The clouded apollo (Parnassius mnemosyne) is a palearctic butterfly distributed over a large part of western Eurasia, but population declines and fragmentation have been observed in many parts of the range. The development of genomic tools can help to shed light on the genetic consequences of the decline and to make informed decisions about direct conservation actions. Here, we present a high-contiguity, chromosome-level genome assembly of a female clouded apollo butterfly and provide detailed annotations of genes and transposable elements. We find that the large genome (1.5 Gb) of the clouded apollo is extraordinarily repeat rich (73%). Despite that, the combination of sequencing techniques allowed us to assemble all chromosomes (nc = 29) to a high degree of completeness. The annotation resulted in a relatively high number of protein-coding genes (22,854) compared with other Lepidoptera, of which a large proportion (21,635) could be assigned functions based on homology with other species. A comparative analysis indicates that overall genome structure has been largely conserved, both within the genus and compared with the ancestral lepidopteran karyotype. The high-quality genome assembly and detailed annotation presented here will constitute an important tool for forthcoming efforts aimed at understanding the genetic consequences of fragmentation and decline, as well as for assessments of genetic diversity, population structure, inbreeding, and genetic load in the clouded apollo butterfly.
  •  
3.
  • Höök, Lars, et al. (författare)
  • Multilayered Tuning of Dosage Compensation and Z-Chromosome Masculinization in the Wood White (Leptidea sinapis) Butterfly
  • 2019
  • Ingår i: Genome Biology and Evolution. - : OXFORD UNIV PRESS. - 1759-6653. ; 11:9, s. 2633-2652
  • Tidskriftsartikel (refereegranskat)abstract
    • In species with genetic sex determination, dosage compensation can evolve to equal expression levels of sex-linked and autosomal genes. Current knowledge about dosage compensation has mainly been derived frommale-heterogametic (XX/XY) model organisms, whereas less is understood about the process in female-heterogametic systems (ZZ/ZW). In moths and butterflies, downregulation of Z-linked expression in males (ZZ) to match the expression level in females (ZW) is often observed. However, little is known about the underlying regulatory mechanisms, or if dosage compensation patterns vary across ontogenetic stages. In this study, we assessed dynamics of Z-linked and autosomal expression levels across developmental stages in the wood white (Leptidea sinapis). We found that although expression of Z-linked genes in general was reduced compared with autosomal genes, dosage compensation was actually complete for some categories of genes, in particular sex-biased genes, but equalization in females was constrained to a narrower gene set. We also observed a noticeable convergence in Z-linked expression between males and females after correcting for sex-biased genes. Sex-biased expression increased successively across developmental stages, and male-biased genes were enriched on the Z-chromosome. Finally, all five core genes associated with the ribonucleoprotein dosage compensation complex male-specific lethal were detected in adult females, in correspondence with a reduction in the expression difference between autosomes and the single Z-chromosome. We show that tuning of gene dosage is multilayered in Lepidoptera and argue that expression balance across chromosomal classes may predominantly be driven by enrichment of male-biased genes on the Z-chromosome and cooption of available dosage regulators.
  •  
4.
  • Näsvall, Karin, et al. (författare)
  • Base composition, codon usage and patterns of gene sequence evolution in butterflies.
  • 2023
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Coding sequence evolution is influenced by both natural selection and neutral evolutionary forces. In many species, the effects of mutation bias, codon usage and GC-biased gene conversion (gBGC) on gene sequence evolution have not been detailed. Quantification of how these forces shape substitution patterns is therefore necessary to understand the strength and direction of natural selection. Here, we used comparative genomics to investigate the association between base composition and codon usage bias on gene sequence evolution in butterflies and moths (Lepidoptera), including an in-depth analysis of underlying patterns and processes in one species, Leptidea sinapis. The data revealed significant G/C to A/T substitution bias at third codon position with some variation in the strength among different butterfly lineages. However, the substitution bias was lower than expected from previously estimated mutation rate ratios, partly due to the influence of gBGC. We found that A/T-ending codons were overrepresented in most species and there was a negative association between the magnitude of codon usage bias and GC-content in third codon positions. In contrast, the tRNA-gene population in L. sinapis showed higher GC-content at third codon positions compared to coding sequences in general and less overrepresentation of A/T-ending codons. There was an inverse relationship between synonymous substitutions and codon usage bias indicating selection on synonymous sites. We conclude that the evolutionary rate in Lepidoptera is affected by a complex interaction between underlying G/C -> A/T mutation bias and partly counteracting fixation biases, predominantly conferred by overall purifying selection, gBGC and selection on codon usage.
  •  
5.
  • Talla, Venkat, et al. (författare)
  • Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species
  • 2019
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 11:10, s. 2875-2886
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative role of natural selection and genetic drift in evolution is a major topic of debate in evolutionary biology. Most knowledge spring from a small group of organisms and originate from before it was possible to generate genome-wide data on genetic variation. Hence, it is necessary to extend to a larger number of taxonomic groups, descriptive and hypothesis-based research aiming at understanding the proximate and ultimate mechanisms underlying both levels of genetic polymorphism and the efficiency of natural selection. In this study, we used data from 60 whole-genome resequenced individuals of three cryptic butterfly species (Leptidea sp.), together with novel gene annotation information and population recombination data. We characterized the overall prevalence of natural selection and investigated the effects of mutation and linked selection on regional variation in nucleotide diversity. Our analyses showed that genome-wide diversity and rate of adaptive substitutions were comparatively low, whereas nonsynonymous to synonymous polymorphism and substitution levels were comparatively high in Leptidea, suggesting small long-term effective population sizes. Still, negative selection on linked sites (background selection) has resulted in reduced nucleotide diversity in regions with relatively high gene density and low recombination rate. We also found a significant effect of mutation rate variation on levels of polymorphism. Finally, there were considerable population differences in levels of genetic diversity and pervasiveness of selection against slightly deleterious alleles, in line with expectations from differences in estimated effective population sizes.
  •  
6.
  • Talla, Venkat, et al. (författare)
  • Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies
  • 2017
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 9:10, s. 2491-2505
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy