SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1759 6653 OR L773:1759 6653 ;pers:(Ellegren Hans)"

Sökning: L773:1759 6653 OR L773:1759 6653 > Ellegren Hans

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Künstner, Axel, et al. (författare)
  • Significant Selective Constraint at 4-Fold Degenerate Sites in the Avian Genome and Its Consequence for Detection of Positive Selection
  • 2011
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 3, s. 1381-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • A major conclusion from comparative genomics is that many sequences that do not code for proteins are conserved beyond neutral expectations, indicating that they evolve under the influence of purifying selection and are likely to have functional roles. Due to the degeneracy of the genetic code, synonymous sites within protein-coding genes have previously been seen as "silent" with respect to function and thereby invisible to selection. However, there are indications that synonymous sites of vertebrate genomes are also subject to selection and this is not necessarily because of potential codon bias. We used divergence in ancestral repeats as a neutral reference to estimate the constraint on 4-fold degenerate sites of avian genes in a whole-genome approach. In the pairwise comparison of chicken and zebra finch, constraint was estimated at 24-32%. Based on three-species alignments of chicken, turkey, and zebra finch, lineage-specific estimates of constraint were 43%, 29%, and 24%, respectively. The finding of significant constraint at 4-fold degenerate sites from data on interspecific divergence was replicated in an analysis of intraspecific diversity in the chicken genome. These observations corroborate recent data from mammalian genomes and call for a reappraisal of the use of synonymous substitution rates as neutral standards in molecular evolutionary analysis, for example, in the use of the well-known d(N)/d(S) ratio and in inferences on positive selection. We show by simulations that the rate of false positives in the detection of positively selected genes and sites increases several-fold at the levels of constraint at 4-fold degenerate sites found in this study.
  •  
2.
  • Mugal, Carina F., et al. (författare)
  • Conservation of Neutral Substitution Rate and Substitutional Asymmetries in Mammalian Genes
  • 2010
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 2:1, s. 19-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Local variation in neutral substitution rate across mammalian genomes is governed by several factors, including sequence context variables and structural variables. In addition, the interplay of replication and transcription, known to induce a strand bias in mutation rate, gives rise to variation in substitutional strand asymmetries. Here, we address the conservation of variation in mutation rate and substitutional strand asymmetries using primate-and rodent-specific repeat elements located within the introns of protein-coding genes. We find significant but weak conservation of local mutation rates between human and mouse orthologs. Likewise, substitutional strand asymmetries are conserved between human and mouse, where substitution rate asymmetries show a higher degree of conservation than mutation rate. Moreover, we provide evidence that replication and transcription are correlated to the strength of substitutional asymmetries. The effect of transcription is particularly visible for genes with highly conserved gene expression. In comparison with replication and transcription, mutation rate influences the strength of substitutional asymmetries only marginally.
  •  
3.
  • Uebbing, Severin, et al. (författare)
  • Transcriptome Sequencing Reveals the Character of Incomplete Dosage Compensation across Multiple Tissues in Flycatchers
  • 2013
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 5:8, s. 1555-1566
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex chromosome divergence, which follows the cessation of recombination and degeneration of the sex-limited chromosome, can cause a reduction in expression level for sex-linked genes in the heterozygous sex, unless some mechanisms of dosage compensation develops to counter the reduction in gene dose. Because large-scale perturbations in expression levels arising from changes in gene dose might have strong deleterious effects, the evolutionary response should be strong. However, in birds and in at least some other female heterogametic organisms, wholesale sex chromosome dosage compensation does not seem to occur. Using RNA-seq of multiple tissues and individuals, we investigated male and female expression levels of Z-linked and autosomal genes in the collared flycatcher, a bird for which a draft genome sequence recently has been reported. We found that male expression of Z-linked genes was on average 50% higher than female expression, although there was considerable variation in the male-to-female ratio among genes. The ratio for individual genes was well correlated among tissues and there was also a correlation in the extent of compensation between flycatcher and chicken orthologs. The relative excess of male expression was positively correlated with expression breadth, expression level, and number of interacting proteins (protein connectivity), and negatively correlated with variance in expression. These observations lead to a model of compensation occurring on a gene-by-gene basis, supported by an absence of clustering of genes on the Z chromosome with respect to the extent of compensation. Equal mean expression level of autosomal and Z-linked genes in males, and 50% higher expression of autosomal than Z-linked genes in females, is compatible with that partial compensation is achieved by hypertranscription from females' single Z chromosome. A comparison with male-to-female expression ratios in orthologous Z-linked genes of ostriches, where Z-W recombination still occurs, suggests that male-biased expression of Z-linked genes is a derived trait after avian sex chromosome divergence.
  •  
4.
  • Wang, Mi, et al. (författare)
  • Bayesian Inference of Allele-Specific Gene Expression Indicates Abundant Cis-Regulatory Variation in Natural Flycatcher Populations
  • 2017
  • Ingår i: Genome Biology and Evolution. - : OXFORD UNIV PRESS. - 1759-6653. ; 9:5, s. 1266-1279
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymorphism in cis-regulatory sequences can lead to different levels of expression for the two alleles of a gene, providing a starting point for the evolution of gene expression. Little is known about the genome-wide abundance of genetic variation in gene regulation in natural populations but analysis of allele-specific expression (ASE) provides a means for investigating such variation. We performed RNA-seq of multiple tissues from population samples of two closely related flycatcher species and developed a Bayesian algorithm that maximizes data usage by borrowing information from the whole data set and combines several SNPs per transcript to detect ASE. Of 2,576 transcripts analyzed in collared flycatcher, ASE was detected in 185 (7.2%) and a similar frequency was seen in the pied flycatcher. Transcripts with statistically significant ASE commonly showed the major allele in > 90% of the reads, reflecting that power was highest when expression was heavily biased toward one of the alleles. This would suggest that the observed frequencies of ASE likely are underestimates. The proportion of ASE transcripts varied among tissues, being lowest in testis and highest in muscle. Individuals often showed ASE of particular transcripts in more than one tissue (73.4%), consistent with a genetic basis for regulation of gene expression. The results suggest that genetic variation in regulatory sequences commonly affects gene expression in natural populations and that it provides a seedbed for phenotypic evolution via divergence in gene expression.
  •  
5.
  • Wolf, Jochen B. W., et al. (författare)
  • Nonlinear Dynamics of Nonsynonymous (d(N)) and Synonymous (d(S)) Substitution Rates Affects Inference of Selection
  • 2009
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 1, s. 308-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Selection modulates gene sequence evolution in different ways by constraining potential changes of amino acid sequences (purifying selection) or by favoring new and adaptive genetic variants (positive selection). The number of nonsynonymous differences in a pair of protein-coding sequences can be used to quantify the mode and strength of selection. To control for regional variation in substitution rates, the proportionate number of nonsynonymous differences (d(N)) is divided by the proportionate number of synonymous differences (d(S)). The resulting ratio (d(N)/d(S)) is a widely used indicator for functional divergence to identify particular genes that underwent positive selection. With the ever-growing amount of genome data, summary statistics like mean d(N)/d(S) allow gathering information on the mode of evolution for entire species. Both applications hinge on the assumption that d(S) and mean d(S) (similar to branch length) are neutral and adequately control for variation in substitution rates across genes and across organisms, respectively. We here explore the validity of this assumption using empirical data based on whole-genome protein sequence alignments between human and 15 other vertebrate species and several simulation approaches. We find that d(N)/d(S) does not appropriately reflect the action of selection as it is strongly influenced by its denominator (d(S)). Particularly for closely related taxa, such as human and chimpanzee, d(N)/d(S) can be misleading and is not an unadulterated indicator of selection. Instead, we suggest that inconsistencies in the behavior of d(N)/d(S) are to be expected and highlight the idea that this behavior may be inherent to taking the ratio of two randomly distributed variables that are nonlinearly correlated. New null hypotheses will be needed to adequately handle these nonlinear dynamics.
  •  
6.
  • Yazdi, Homa Papoli, et al. (författare)
  • A Genetic Map of Ostrich Z Chromosome and the Role of Inversions in Avian Sex Chromosome Evolution
  • 2018
  • Ingår i: Genome Biology and Evolution. - : OXFORD UNIV PRESS. - 1759-6653. ; 10:8, s. 2049-2060
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombination arrest is a necessary step for the evolution of distinct sex chromosomes. Structural changes, such as inversions, may represent the mechanistic basis for recombination suppression and comparisons of the structural organization of chromosomes as given by chromosome-level assemblies offer the possibility to infer inversions across species at some detail. In birds, deduction of the process of sex chromosome evolution has been hampered by the lack of a validated chromosome-level assembly from a representative of one of the two basal clades of modern birds, Paleognathae. We therefore developed a high-density genetic linkage map of the ostrich Z chromosome and used this to correct an existing assembly, including correction of a large chimeric superscaffold and the order and orientation of other superscaffolds. We identified the pseudoautosomal region as a 52 Mb segment (approximate to 60% of the Z chromosome) where recombination occurred in both sexes. By comparing the order and location of genes on the ostrich Z chromosome with that of six bird species from the other major Glade of birds (Neognathae), and of reptilian outgroup species, 25 Z-linked inversions were inferred in the avian lineages. We defined Z chromosome organization in an early avian ancestor and identified inversions spanning the candidate sex-determining DMRT1 gene in this ancestor, which could potentially have triggered the onset of avian sex chromosome evolution. We conclude that avian sex chromosome evolution has been characterized by a complex process of probably both Z-linked and W-linked inversions (and/or other processes). This study illustrates the need for validated chromosome-level assemblies for inference of genome evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy