SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1759 6653 OR L773:1759 6653 ;pers:(Slotte Tanja)"

Sökning: L773:1759 6653 OR L773:1759 6653 > Slotte Tanja

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gutiérrez-Valencia, Juanita, et al. (författare)
  • The Genomic Architecture and Evolutionary Fates of Supergenes
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 13:5
  • Forskningsöversikt (refereegranskat)abstract
    • Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
  •  
2.
  • Horvath, Robert, et al. (författare)
  • The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora
  • 2017
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 9:10, s. 2911-2920
  • Tidskriftsartikel (refereegranskat)abstract
    • To avoid negative effects of transposable element (TE) proliferation, plants epigenetically silence TEs using a number of mechanisms, including RNA-directed DNA methylation. These epigenetic modifications can extend outside the boundaries of TE insertions and lead to silencing of nearby genes, resulting in a trade-off between TE silencing and interference with nearby gene regulation. Therefore, purifying selection is expected to remove silenced TE insertions near genes more efficiently and prevent their accumulation within a population. To explore how effects of TE silencing on gene regulation shapes purifying selection on TEs, we analyzed whole genome sequencing data from 166 individuals of a large population of the outcrossing species Capsella grandiflora. We found that most TEs are rare, and in chromosome arms, silenced TEs are exposed to stronger purifying selection than those that are not silenced by 24-nucleotide small RNAs, especially with increasing proximity to genes. An age-of-allele test of neutrality on a subset of TEs supports our inference of purifying selection on silenced TEs, suggesting that our results are robust to varying transposition rates. Our results provide new insights into the processes affecting the accumulation of TEs in an outcrossing species and support the view that epigenetic silencing of TEs results in a trade-off between preventing TE proliferation and interference with nearby gene regulation. We also suggest that in the centromeric and pericentromeric regions, the negative aspects of epigenetic TE silencing are missing.
  •  
3.
  • Qiu, Suo, et al. (författare)
  • Reduced Efficacy of Natural Selection on Codon Usage Bias in Selfing Arabidopsis and Capsella Species
  • 2011
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 3, s. 868-880
  • Tidskriftsartikel (refereegranskat)abstract
    • Population genetic theory predicts that the efficacy of natural selection in a self-fertilizing species should be lower than its outcrossing relatives because of the reduction in the effective population size (N(e)) in the former brought about by inbreeding. However, previous analyses comparing Arabidopsis thaliana (selfer) with A. lyrata (outcrosser) have not found conclusive support for this prediction. In this study, we addressed this issue by examining silent site polymorphisms (synonymous and intronic), which are expected to be informative about changes in N(e). Two comparisons were made: A. thaliana versus A. lyrata and Capsella rubella (selfer) versus C. grandiflora (outcrosser). Extensive polymorphism data sets were obtained by compiling published data from the literature and by sequencing 354 exon loci in C. rubella and 89 additional loci in C. grandiflora. To extract information from the data effectively for studying these questions, we extended two recently developed models in order to investigate detailed selective differences between synonymous codons, mutational biases, and biased gene conversion (BGC), taking into account the effects of recent changes in population size. We found evidence that selection on synonymous codons is significantly weaker in the selfers compared with the outcrossers and that this difference cannot be fully accounted for by mutational biases or BGC.
  •  
4.
  • Slotte, Tanja, et al. (författare)
  • Genomic Determinants of Protein Evolution and Polymorphism in Arabidopsis
  • 2011
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 3, s. 1210-1219
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent results from Drosophila suggest that positive selection has a substantial impact on genomic patterns of polymorphism and divergence. However, species with smaller population sizes and/or stronger population structure may not be expected to exhibit Drosophila-like patterns of sequence variation. We test this prediction and identify determinants of levels of polymorphism and rates of protein evolution using genomic data from Arabidopsis thaliana and the recently sequenced Arabidopsis lyrata genome. We find that, in contrast to Drosophila, there is no negative relationship between nonsynonymous divergence and silent polymorphism at any spatial scale examined. Instead, synonymous divergence is a major predictor of silent polymorphism, which suggests variation in mutation rate as the main determinant of silent variation. Variation in rates of protein divergence is mainly correlated with gene expression level and breadth, consistent with results for a broad range of taxa, and map-based estimates of recombination rate are only weakly correlated with nonsynonymous divergence. Variation in mutation rates and the strength of purifying selection seem to be major drivers of patterns of polymorphism and divergence in Arabidopsis. Nevertheless, a model allowing for varying negative and positive selection by functional gene category explains the data better than a homogeneous model, implying the action of positive selection on a subset of genes. Genes involved in disease resistance and abiotic stress display high proportions of adaptive substitution. Our results are important for a general understanding of the determinants of rates of protein evolution and the impact of selection on patterns of polymorphism and divergence.
  •  
5.
  • Yang, Xuyue, et al. (författare)
  • Differential Expression of Immune Genes between Two Closely Related Beetle Species with Different Immunocompetence following Attack by Asecodes parvidava
  • 2020
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 12:5, s. 522-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Endoparasitoid wasps are important natural enemies of many insect species and are major selective forces on the host immune system. Despite increased interest in insect antiparasitoid immunity, there is sparse information on the evolutionary dynamics of biological pathways and gene regulation involved in host immune defense outside Drosophila species. We de novo assembled transcriptomes from two beetle species and used time-course differential expression analysis to investigate gene expression differences in closely related species Galerucella pusilla and G. calmariensis that are, respectively, resistant and susceptible against parasitoid infection by Asecodes paividava parasitoids. Approximately 271 million and 224 million paired-ended reads were assembled and filtered to form 52,563 and 59,781 transcripts for G. pusilla and G. calmariensis, respectively. In the whole-transcriptome level, an enrichment of functional categories related to energy production, biosynthetic process, and metabolic process was exhibited in both species. The main difference between species appears to be immune response and wound healing process mounted by G. pusilla larvae. Using reciprocal BLAST against the Drosophila melanogaster proteome, 120 and 121 immune-related genes were identified in G. pusilla and G. calmariensis, respectively. More immune genes were differentially expressed in G. pusilla than in G. calmariensis, in particular genes involved in signaling, hematopoiesis, and melanization. In contrast, only one gene was differentially expressed in G. calmariensis. Our study characterizes important genes and pathways involved in different immune functions after parasitoid infection and supports the role of signaling and hematopoiesis genes as key players in host immunity in Galerucella against parasitoid wasps.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy