SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1932 6203 OR L773:1932 6203 ;pers:(Andersson G)"

Search: L773:1932 6203 OR L773:1932 6203 > Andersson G

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Brindefalk, Björn, et al. (author)
  • A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade
  • 2011
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9, s. e24457-
  • Journal article (peer-reviewed)abstract
    • Background: According to the endosymbiont hypothesis, the mitochondrial system for aerobic respiration was derived from an ancestral Alphaproteobacterium. Phylogenetic studies indicate that the mitochondrial ancestor is most closely related to the Rickettsiales. Recently, it was suggested that Candidatus Pelagibacter ubique, a member of the SAR11 clade that is highly abundant in the oceans, is a sister taxon to the mitochondrial-Rickettsiales clade. The availability of ocean metagenome data substantially increases the sampling of Alphaproteobacteria inhabiting the oxygen-containing waters of the oceans that likely resemble the originating environment of mitochondria. Methodology/Principal Findings: We present a phylogenetic study of the origin of mitochondria that incorporates metagenome data from the Global Ocean Sampling (GOS) expedition. We identify mitochondrially related sequences in the GOS dataset that represent a rare group of Alphaproteobacteria, designated OMAC (Oceanic Mitochondria Affiliated Clade) as the closest free-living relatives to mitochondria in the oceans. In addition, our analyses reject the hypothesis that the mitochondrial system for aerobic respiration is affiliated with that of the SAR11 clade. Conclusions/Significance: Our results allude to the existence of an alphaproteobacterial clade in the oxygen-rich surface waters of the oceans that represents the closest free-living relative to mitochondria identified thus far. In addition, our findings underscore the importance of expanding the taxonomic diversity in phylogenetic analyses beyond that represented by cultivated bacteria to study the origin of mitochondria.
  •  
3.
  • Ekblom Bak, Elin, 1981-, et al. (author)
  • Latent profile analysis patterns of exercise, sitting and fitness in adults – Associations with metabolic risk factors, perceived health, and perceived symptoms
  • 2020
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:4
  • Journal article (peer-reviewed)abstract
    • Aim To identify and describe the characteristics of naturally occurring patterns of exercise, sitting in leisure time and at work and cardiorespiratory fitness, and the association of such profiles with metabolic risk factors, perceived health, and perceived symptoms. Methods 64,970 participants (42% women, 18–75 years) participating in an occupational health service screening in 2014–2018 were included. Exercise and sitting were self-reported. Cardiorespiratory fitness was estimated using a submaximal cycle test. Latent profile analysis was used to identify profiles. BMI and blood pressure were assessed through physical examination. Perceived back/neck pain, overall stress, global health, and sleeping problems were self-reported. Results Six profiles based on exercise, sitting in leisure time and at work and cardiorespiratory fitness were identified and labelled; Profile 1 “Inactive, low fit and average sitting in leisure, with less sitting at work”; Profile 2 “Inactive, low fit and sedentary”; Profile 3 “Active and average fit, with less sitting at work”; Profile 4 “Active, average fit and sedentary in leisure, with a sedentary work” (the most common profile, 35% of the population); Profile 5 “Active and fit, with a sedentary work”; Profile 6 “Active and fit, with less sitting at work”. Some pairwise similarities were found between profiles (1 and 2, 3 and 4, 5 and 6), mainly based on similar levels of exercise, leisure time sitting and fitness, which translated into similar dose-response associations with the outcomes. In general, profile 1 and 2 demonstrated most adverse metabolic and perceived health, profile 4 had a more beneficial health than profile 3, as did profile 6 compared to profile 5. Conclusions The present results implies a large variation in exercise, sitting, and fitness when studying naturally occurring patterns, and emphasize the possibility to target exercise, sitting time, and/or fitness in health enhancing promotion intervention and strategies. © 2020 Ekblom-Bak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
4.
  • Ellegaard, Kirsten Maren, et al. (author)
  • Testing the Reproducibility of Multiple Displacement Amplification on Genomes of Clonal Endosymbiont Populations
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:11, s. e82319-
  • Journal article (peer-reviewed)abstract
    • The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated.
  •  
5.
  • Guy, Lionel, et al. (author)
  • Adaptive Mutations and Replacements of Virulence Traits in the Escherichia coli O104:H4 Outbreak Population
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:5, s. e63027-
  • Journal article (peer-reviewed)abstract
    • The sequencing of highly virulent Escherichia coli O104:H4 strains isolated during the outbreak of bloody diarrhea and hemolytic uremic syndrome in Europe in 2011 revealed a genome that contained a Shiga toxin encoding prophage and a plasmid encoding enteroaggregative fimbriae. Here, we present the draft genome sequence of a strain isolated in Sweden from a patient who had travelled to Tunisia in 2010 (E112/10) and was found to differ from the outbreak strains by only 38 SNPs in non-repetitive regions, 16 of which were mapped to the branch to the outbreak strain. We identified putatively adaptive mutations in genes for transporters, outer surface proteins and enzymes involved in the metabolism of carbohydrates. A comparative analysis with other historical strains showed that E112/10 contained Shiga toxin prophage genes of the same genotype as the outbreak strain, while these genes have been replaced by a different genotype in two otherwise very closely related strains isolated in the Republic of Georgia in 2009. We also present the genome sequences of two enteroaggregative E. coli strains affiliated with phylogroup A (C43/90 and C48/93) that contain the agg genes for the AAF/I-type fimbriae characteristic of the outbreak population. Interestingly, C43/90 also contained a tet/mer antibiotic resistance island that was nearly identical in sequence to that of the outbreak strain, while the corresponding island in the Georgian strains was most similar to E. coli strains of other serotypes. We conclude that the pan-genome of the outbreak population is shared with strains of the A phylogroup and that its evolutionary history is littered with gene replacement events, including most recently independent acquisitions of antibiotic resistance genes in the outbreak strains and its nearest neighbors. The results are summarized in a refined evolutionary model for the emergence of the O104:H4 outbreak population.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Siozios, Stefanos, et al. (author)
  • The Diversity and Evolution of Wolbachia Ankyrin Repeat Domain Genes
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:2, s. e55390-
  • Journal article (peer-reviewed)abstract
    • Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intragenic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.
  •  
10.
  • Zaremba-Niedzwiedzka, Katarzyna, et al. (author)
  • No Ancient DNA Damage in Actinobacteria from the Neanderthal Bone
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:5, s. e62799-
  • Journal article (peer-reviewed)abstract
    • Background: The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be <6% and 9%, respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA to 15%, but the large majority of sequences remain uncharacterized. Principal Findings: Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16 fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene sequences. Conclusions/Significance: Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales, contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of endogenous DNA in the sample.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view