SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1939 327X ;pers:(Tuomi Tiinamaija)"

Search: L773:1939 327X > Tuomi Tiinamaija

  • Result 1-10 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahlqvist, Emma, et al. (author)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Journal article (peer-reviewed)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
2.
  • Buzzetti, Raffaella, et al. (author)
  • Management of latent autoimmune diabetes in adults : A consensus statement from an international expert panel
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2037-2047
  • Journal article (peer-reviewed)abstract
    • A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose deviations for LADA from those guidelines. Within LADA, C-peptide values, proxy for b-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel: 1) C-peptide levels <0.3 nmol/L: A multiple-insulin regimen recommended as for T1D; 2) C-peptide values >0.3 and <0.7 nmol/L: Defined by the panel as a gray area in which a modified ADA/EASD algorithm for T2D is recommended; consider insulin in combination with other therapies to modulate β-cell failure and limit diabetic complications; 3) C-peptide values >0.7 nmol/L: Suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed noninsulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
  •  
3.
  • Campbell, Catarina D., et al. (author)
  • Association studies of BMI and type 2 diabetes in the neuropeptide y pathway - A possible role for NPY2R as a candidate gene for type 2 diabetes in men
  • 2007
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:5, s. 1460-1467
  • Journal article (peer-reviewed)abstract
    • The neuropeptide Y (NPY) family of peptides and receptors regulate food intake. Inherited variation in this pathway could influence susceptibility to obesity and its complications, including type 2 diabetes. We genotyped a set of 71 single nucleotide polymorphisms (SNPs) that capture the most common variation in NPY, PPY, PYY, NPY1R, NPY2R, and NPY5R in 2,800 individuals of recent European ancestry drawn from the near extremes of BMI distribution. Five SNPs located upstream of NPY2R were nominally associated with BMI in men (P values = 0.001-0.009, odds ratios [ORs] 1.27-1.34). No association with BMI was observed in women, and no consistent associations were observed for other genes in this pathway. We attempted to replicate the association with BMI in 2,500 men and tested these SNPs for association with type 2 diabetes in 8,000 samples. We observed association with BMI in men in only one replica- tion sample and saw no association in the combined replication samples (P = 0.154, OR = 1.09). Finally, a 9% haplotype was associated with type 2 diabetes in men (P = 1.73 x 10(-4), OR = 1.36) and not in women. Variation in this pathway likely does not have a major influence on BMI, although small effects cannot be ruled out; NPY2R should be considered a candidate gene for type 2 diabetes in men.
  •  
4.
  • Cervin, Camilla, et al. (author)
  • Cosegregation of MIDD and MODY in a Pedigree: Functional and Clinical Consequences.
  • 2004
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 53:7, s. 1894-1899
  • Journal article (peer-reviewed)abstract
    • The aim of this study was characterization of a family carrying two mutations known to cause monogenic forms of diabetes, the M626K mutation in the HNF1α gene (MODY3) and the A3243G in mtDNA. β-Cell function and insulin sensitivity were assessed with the Botnia clamp. Heteroplasmy of the A3243G mutation and variants in type 2 diabetes susceptibility genes were determined, and transcriptional activity, DNA binding, and subcellular localization of mutated HNF1α were studied. Thirteen family members carried the mutation in mtDNA; 6 of them also had the M626K mutation, whereas none had only the M626K mutation. The protective Ala12 allele in peroxisome proliferator–activated receptor (PPAR)γ was present in two nondiabetic individuals. Carriers of both mtDNA and HNF1α mutations showed an earlier age at onset of diabetes than carriers of only the mtDNA mutation (median 22 vs. 45 years) but no clear difference in β-cell function or insulin sensitivity. In vitro, the M626K mutation caused a 53% decrease in transcriptional activity in HeLa cells. The mutated protein showed normal nuclear targeting but increased DNA binding. These data demonstrate that several genetic factors might contribute to diabetes risk, even in families with mtDNA and HNF1α mutations.
  •  
5.
  • Cervin, Camilla, et al. (author)
  • Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes
  • 2008
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:5, s. 1433-1437
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE-Latent autoimmune diabetes in adults (LADA) is often considered a slowly progressing subtype of type 1 diabetes, although the clinical picture more resembles type 2 diabetes. One way to improve classification is to study whether LADA shares genetic features with type 1 and/or type 2 diabetes. RESEARCH DESIGN AND METHODS-To accomplish this we studied whether LADA shares variation in the HLA locus or INS VNTR and PTPN22 genes with type I diabetes or the TCF7L2 gene with type 2 diabetes in 361 LADA, 718 type 1 diabetic, and 1,676 type 2 diabetic patients, as well as 1,704 healthy control subjects from Sweden and Finland. RESULTS-LADA subjects showed, compared with type 2 diabetic patients, increased frequency of risk for the HLA-DQB1 *0201/*0302 genotype (27 vs. 6.9%; P < 1 X 10(-6)), with similar frequency as with type I diabetes (36%). In addition, LADA subjects showed higher frequencies of protective HLA-DQB1 *0602(3)/X than type I diabetic patients (8.1 vs. 3.2%, P = 0.003). The AA genotype of rs689, referring to the class I allele in the INS VNTR, as well as the CT/TT genotypes of rs2476601 in the PTPN22 gene, were increased both in type 1 diabetic (P = 3 X 10(-14) and P = 1 X 10(-10), respectively) and LADA (P = 0.001 and P = 0.002) subjects compared with control subjects. Notably, the frequency of the type 2 diabetes-associated CT/TT genotypes of rs7903146 in the TCF7L2 were increased in LADA subjects (52.8%; P = 0.03), to the same extent as in type 2 diabetic subjects (54.1%, P = 3 X 10(-7)), compared with control subjects (44.8%) and type I diabetic subjects (43.39%). CONCLUSIONS-LADA shares genetic features with both type I (HLA, INS VNTR, and PTPN22) and type 2 (TCF7L2) diabetes, which justifies considering LADA as an admixture of the two major types of diabetes.
  •  
6.
  • Ferrannini, Ele, et al. (author)
  • Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance
  • 2013
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:5, s. 1730-1737
  • Journal article (peer-reviewed)abstract
    • Metabolomic screening of fasting plasma from nondiabetic subjects identified alpha-hydroxybutyrate (alpha-HB) and linoleoyl-glycerophosphocholine (L-GPC) as joint markers of insulin resistance (IR) and glucose intolerance. To test the predictivity of alpha-HB and L-GPC for incident dysglycemia, alpha-HB and L-GPC measurements were obtained in two observational cohorts, comprising 1,261 nondiabetic participants from the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study and 2,580 from the Botnia Prospective Study, with 3-year and 9.5-year follow-up data, respectively. In both cohorts, alpha-HB was a positive correlate and L-GPC a negative correlate of insulin sensitivity, with alpha-HB reciprocally related to indices of beta-cell function derived from the oral glucose tolerance test (OGTT). In follow-up, alpha-HB was a positive predictor (adjusted odds ratios 1.25 [95% CI 1.00-1.60] and 1.26 [1.07-1.48], respectively, for each standard deviation of predictor), and L-GPC was a negative predictor (0.64 [0.48-0.85] and 0.67 [0.54-0.84]) of dysglycemia (RISC) or type 2 diabetes (Botnia), independent of familial diabetes, sex, age, BMI, and fasting glucose. Corresponding areas under the receiver operating characteristic curve were 0.791 (RISC) and 0.783 (Botnia), similar in accuracy when substituting cc-JIB and L-GPC with 2-h OGTT glucose concentrations. When their activity was examined, alpha-JIB inhibited and L-GPC stimulated glucose-induced insulin release in INS-le cells. alpha-JIB and L-GPC are independent predictors of worsening glucose tolerance, physiologically consistent with a joint signature of IR and beta-cell dysfunction. Diabetes 62:1730-1737, 2013
  •  
7.
  • Florez, Jose C., et al. (author)
  • Haplotype Structure and Genotype-Phenotype Correlations of the Sulfonylurea Receptor and the Islet ATP-Sensitive Potassium Channel Gene Region.
  • 2004
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 53:5, s. 1360-1368
  • Journal article (peer-reviewed)abstract
    • The genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.2 with risk of type 2 diabetes. Whether and how E23K itself—or other variant(s) in either of these two closely linked genes—influences type 2 diabetes remains to be fully determined. To better understand genotype-phenotype correlation at this important candidate gene locus, we 1) characterized haplotype structures across the gene region by typing 77 working, high-frequency markers spanning 207 kb and both genes; 2) performed association studies of E23K and nearby markers in &gt;3,400 patients (type 2 diabetes and control) not previously reported in the literature; and 3) analyzed the resulting data for measures of insulin secretion. These data independently replicate the association of E23K with type 2 diabetes with an odds ratio (OR) in the new data of 1.17 (P = 0.003) as compared with an OR of 1.14 provided by meta-analysis of previously published, nonoverlapping data (P = 0.0002). We find that the E23K variant in Kir6.2 demonstrates very strong allelic association with a coding variant (A1369S) in the neighboring SUR1 gene (r2 &gt; 0.9) across a range of population samples, making it difficult to distinguish which gene and polymorphism in this region are most likely responsible for the reported association. We show that E23K is also associated with decreased insulin secretion in glucose-tolerant control subjects, supporting a mechanism whereby β-cell dysfunction contributes to the common form of type 2 diabetes. Like peroxisome proliferator–activated receptor γ, the SUR1/Kir6.2 gene region both contributes to the inherited risk of type 2 diabetes and encodes proteins that are targets for hypoglycemic medications, providing an intriguing link between the underlying mechanism of disease and validated targets for pharmacological treatment.
  •  
8.
  • Florez, Jose C., et al. (author)
  • The Kruppel-like factor 11 (KLF11) Q62R polymorphism is not associated with type 2 diabetes in 8,676 people
  • 2006
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:12, s. 3620-3624
  • Journal article (peer-reviewed)abstract
    • Kruppel-like factor 11 is a pancreatic transcription factor whose activity induces the insulin gene. A common glutamine-to-arginine change at codon 62 (Q62R) in its gene KLF11 has been recently associated with type 2 diabetes in two independent samples. Q62R and two other rare missense variants (A347S and T220M) were also shown to affect the function of KLF11 in vitro, and insulin levels were lower in carriers of the minor allele at Q62R. We therefore examined their impact on common type 2 diabetes in several family-based and case-control samples of northern-European ancestry, totaling 8,676 individuals. We did not detect the rare A347S and T220M variants in our samples. With respect to Q62R, despite > 99% power to detect an association of the previously published magnitude, Q62R was not associated with type 2 diabetes (pooled odds ratio 0.97 [95% Cl 0.88-1.08], P = 0.63). In a subset of normoglycemic individuals, we did not observe significant differences in various insulin traits according to genotype at KLF11 Q62R. We conclude that the KLF11 A347S and T220M mutations do not contribute to increased risk of diabetes in European-derived populations and that the Q62R polymorphism has, at best, a minor effect on diabetes risk.
  •  
9.
  • Frayling, Timothy M., et al. (author)
  • A Genome-Wide Scan in Families With Maturity-Onset Diabetes of the Young: Evidence for Further Genetic Heterogeneity.
  • 2003
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 52:3, s. 872-881
  • Journal article (peer-reviewed)abstract
    • Maturity-onset diabetes of the young (MODY) is a heterogeneous single gene disorder characterized by non–insulin-dependent diabetes, an early onset and autosomal dominant inheritance. Mutations in six genes have been shown to cause MODY. Approximately 15–20% of families fitting MODY criteria do not have mutations in any of the known genes. These families provide a rich resource for the identification of new MODY genes. This will potentially enable further dissection of clinical heterogeneity and bring new insights into mechanisms of β-cell dysfunction. To facilitate the identification of novel MODY loci, we combined the results from three genome-wide scans on a total of 23 families fitting MODY criteria. We used both a strict parametric model of inheritance with heterogeneity and a model-free analysis. We did not identify any single novel locus but provided putative evidence for linkage to chromosomes 6 (nonparametric linkage [NPL]score 2.12 at 71 cM) and 10 (NPL score 1.88 at 169–175 cM), and to chromosomes 3 (heterogeneity LOD [HLOD] score 1.27 at 124 cM) and 5 (HLOD score 1.22 at 175 cM) in 14 more strictly defined families. Our results provide evidence for further heterogeneity in MODY.
  •  
10.
  • Holmkvist, Johan, et al. (author)
  • Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes
  • 2008
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:6, s. 1738-1744
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE-Mutations in the hepatocyte nuclear factor (HNF)-1 alpha, HNF-4 alpha, glucokinase (GCK), and HNF-1 beta genes cause maturity-onset diabetes of the young (MODY), but it is not known whether common variants in these genes predict future type 2 diabetes. RESEARCH DESIGN AND METHODS-We tested 14 previously associated polymorphisms in HNF-1 alpha, HNF-4 alpha, GCK, and HNF-1 beta for association with type 2 diabetes-related traits and future risk of type 2 diabetes in 2,293 individuals from the Botnia study (Finland) and in 15,538 individuals from the Malmo Preventive Project (Sweden) with a total follow-up >360,000 years. RESULTS-The polymorphism rs1169288 in HNF-1 alpha strongly predicted future type 2 diabetes (hazard ratio [HR] 1.2, P = 0.0002). Also, SNPs rs4810424 and rs3212198 in HNF-4a nominally predicted future type 2 diabetes (HR 1.3 [95% CI 1.0-1.6], P = 0.03; and 1.1 [1.0-1.2], P = 0.04). The rs2144908 polymorphism in HNF-4 alpha was associated with elevated rate of hepatic glucose production during a hyperinsulinemic-euglycemic clamp (P = 0.03) but not with deterioration of insulin secretion over time. The SNP rs1799884 in the GCK promoter was associated with elevated fasting plasma glucose (fPG) concentrations that remained unchanged during the follow-up period (P = 0.4; SE 0.004 [-0.003-0.007]) but did not predict future type 2 diabetes (HR 0.9 [0.8 -1.0], P = 0.1). Polymorphisms in HNF-1 beta (transcription factor 2 [TCF2]) did not significantly influence insulin or glucose values nor did they predict future type 2 diabetes. CONCLUSIONS-In conclusion, genetic variation in both HNF-1 alpha and HNF-4 alpha predict future type 2 diabetes, whereas variation in the GCK promoter results in a sustained but subtle elevation of fPG that is not sufficient to increase risk for future type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view