SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1947 3931 OR L773:1947 394X ;lar1:(ltu)"

Sökning: L773:1947 3931 OR L773:1947 394X > Luleå tekniska universitet

  • Resultat 1-10 av 99
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbas, Nahlah, et al. (författare)
  • Assessment of Climate Change Impact on Water Resources of Lesser Zab, Kurdistan, Iraq Using SWAT Model
  • 2016
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 8, s. 697-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Kurdistan in northern Iraq, a semi-arid region, predominantly a pastureland, is nourished by Lesser Zab, which is the second major tributary of Tigris River. The discharge in the tributary, in recent times, has been experiencing increasing variability contributing to more severe droughts and floods supposedly due to climate change. For a proper appreciation, SWAT model has been used to assess the impact of climate change on its hydrological components for a half-centennial lead time to 2046-2064 and a centennial lead time to 2080-2100. The suitability of the model was first evaluated, and then, outputs from six GCMs were incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A1B, A2 and B1. The results showed worsening water resources regime.
  •  
2.
  • Abbas, Nahlah, et al. (författare)
  • Assessment of Climate Change Impacts on Water Resources of Al-Adhaim, Iraq Using SWAT Model
  • 2016
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 8, s. 716-732
  • Tidskriftsartikel (refereegranskat)abstract
    • SWAT model (Sediment and Water Assessment Tool) was used to evaluate the impacts of climate change on water resources in Al-Adhaim Basin which is located in north east of Iraq. Al-Adhaim River is the main source of fresh water to Kirkuk City, one of the largest cities of Iraq. Recent studies have shown that blue and green waters of the basin have been manifesting increasing variability contributing to more severe droughts and floods apparently due to climate change. In order to gain greater appreciation of the impacts of climate change on water resources in the study area in near and distant future, SWAT (Soil and Water Assessment Tool) has been used. The model is first tested for its suitability in capturing the basin characteristics, and then, forecasts from six GCMs with about half-a-century lead time to 2046-2064 and one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A2, A1B and B1. The results showed worsening water resources regime into the future.
  •  
3.
  • Abbas, Nahla, et al. (författare)
  • Flow Variation of the Major Tributaries of Tigris River Due to Climate Change
  • 2019
  • Ingår i: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 11:8, s. 437-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Iraq relies greatly  on  the  flow of  the  Euphrates  and  Tigris Rivers  and  their tributaries. Five tributaries namely Khabour, Greater Zab, Lesser Zab, AlAd- hiam  and  Daylia,  which  are  the  major  tributaries  of  Tigris  River,  sustain Northern  Iraq  Region,  a  semi-arid,  mainly  a  pastureland.  These  tributaries contribute about 24 km3  of water annually. The discharge in the tributaries, in recent  times,  has  been  suffering  increasing  variability  contributing  to  more severe droughts and floods apparently due to climate change. This is because there were no dams constructed outside Iraq previously. For an appropriate appreciation,  Soil  Water  Assessment Tool  (SWAT)  model  was used  to evaluate  the  impact  of  climate  change  on  their  discharge  for  a  half-centennial lead time to 2046-2064 and a centennial lead time to 2080-2100. The suitability of the model was first evaluated, and then, outputs from six GCMs were incorporated  to  evaluate  the  impacts  of  climate  change  on  water  resources under three emission scenarios: A1B, A2 and B1. The results showed that wa-ter resources are expected to decrease with time.
  •  
4.
  • Abbas, Nahla, et al. (författare)
  • Model-Based Assessment of Climate Change Impact on Isaac River Catchment, Queensland
  • 2016
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 8:7, s. 460-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Isaac River catchment, which is located within Fitzroy basin in Central Queensland, Australia is mostly a semi-arid region, sparsely populated, but rife with economic activities such as mining, grazing, cropping and production forestry. Hydro-meteorological data over the past several decades reveal that the catchment is experiencing increasing variability in precipitation and streamflow contributing to more severe droughts and floods supposedly due to climate change. The exposure of the economic activities in the catchment to the vagaries of nature and the possible impacts of climate change on the stream flow regime are to be analyzed. For the purpose, SWAT model was adopted to capture the dynamics of the catchment. During calibration of the model 12parameters were found to be significant which yielded a R2 value of 0.73 for calibration and 0.66 for validation. In the next stage, six GCMs from CMIP3 namely, CGCM3.1/T47, CNRM-CM3, GFDLCM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the Fitzroy basin under a very high emissions scenario (A2), a medium emissions scenario(A1B) and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100). All GCMs showed consistent increases in temperature, and as expected, highest rate for A2 and lowest rate for B1. Precipitation predictions were mixed-reductions in A2 and increases in A1B and B1, and more variations in distant future compared to near future. When the projected temperaturesand precipitation were inputted into the SWAT model, and the model outputs were compared with the baseline period (1980-2010), the picture that emerged depicted worsening water resources variability.
  •  
5.
  • Abdullah, Twana, et al. (författare)
  • Groundwater Vulnerability Mapping Using Lineament Density on Standard DRASTIC Model : Case Study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq
  • 2015
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 7:10, s. 644-667
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater is the most important source of water in the Halabja-Saidsadiq Basin. In this study, to generate a map of groundwater pollution vulnerability of the basin, the standard DRASTIC method has been applied. Due to the close relation between lineament density and groundwater flow and yield, the lineament density map was applied to the standard DRASTIC model in order to ensure accuracy towards the consideration of the effects of potential vulnerability to contamination. A lineament map is extracted from Enhanced Thematic Mapper plus (ETM+) satellite imagery using different techniques in remote sensing and GIS. The lineament density map illustrates that only six classes of lineament density can be identified ranged from (0 - 2.4). The lineament density map was rated and weighted and then converted to lineament index map. This index map is an additional parameter which was added to the standard DRASTIC model so as to map the modified DRASTIC vulnerability in HSB. The standard vulnerability map, classified the basin into four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). While the modified model classified the area into four categories as well: very low (28.75%), low (14.31%), moderate (46.91%) and high (10.04%). The results demonstrate that there is no significant variation in the rate of vulnerability. Therefore, the nitrate concentration between two different seasons (dry and wet) was analyzed from (30) water wells, considerable variations in nitrate concentration from dry to wet seasons had been noted. Consequently, it confirmed that the HSB are capable to receive the contaminant because of suitability in terms of geological and hydrogeological conditions. Based on this verification, it could be claimed that the effect of lineament density is weak on the vulnerability system in HSB, because of its low density value.
  •  
6.
  • Abdullah, Twana, et al. (författare)
  • Groundwater Vulnerability Using DRASTIC and COP Models : Case Study of Halabja Saidsadiq Basin, Iraq
  • 2016
  • Ingår i: Engineering. - USA : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 8:11, s. 741-760
  • Tidskriftsartikel (refereegranskat)abstract
    • To avoid groundwater from contamination, the groundwater vulnerability tool can be examined. In this study, two methods were applied, namely: DRASTIC (Groundwater depth, Net recharge, Aquifer media, Soil map, Topography, Impact of vadose zone and Hydraulic Conductivity) and COP (Concentration of flow, Overlying layer and Precipitation) to model groundwater vulnerability to pollution. The result illustrated that four vulnerability classes were recognized based on both models including very low, low, moderate and high vulnerability classes. The coverage areas of each class are (34%, 13%, 48% and 5%) by DRASTIC model and (1%, 37%, 2% and 60%) by COP model, respectively. The notable dissimilarity between these two models was recognized. For this reason, nitrate elements were selected as a pollution indicator to validate the result. The concentrations of nitrate were recorded in two following seasons in (30) watering wells; as a result, the substantial variation was noted. This indicates that contaminants can be easily reached the groundwater due to its suitability in geological and hydrogeological conditions in terms of contaminant transportation. Based on this confirmation, the standard DRASTIC method becomes more sensible than COP method.
  •  
7.
  • Abdullah, Twana O., et al. (författare)
  • Magnitude and Direction of Groundwater Seepage Velocity in Different Soil and Rock Materials
  • 2020
  • Ingår i: Engineering. - USA : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 12:4, s. 242-253
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand and anticipate flow in various groundwater media, the magnitude and direction of groundwater flow velocity must be deemed. The studied area which is called Halabja-Sadiq Basin is in the northeastern part of Iraq and covers an area of approximately 128,000 square hectometers. There are several groundwater aquifers in this region that supply nearly over 90% of all water needs. Subsequently, it is of highly requirement to identify various groundwater behaviors in the area. The objective of this study is to estimate the magnitude and direction of the groundwater seepage velocity with the aid of groundwater tool in Geographic Information System technology. Refer to the results of this analysis, the magnitude value of groundwater flow velocity ranged from 0 to 51 m/d, whilst the general flow movement is from the eastern part to the western part of the study area. The factor governing the direction of flow and velocity magnitude indicates the direction of dipping of the geological formation strata, the high head of groundwater in the eastern part, and the low transmissivity properties of aquifer materials in the western part.
  •  
8.
  • Abdulwahd, Abdulrazaq K., et al. (författare)
  • Water Runoff Estimation Using Geographical Information System (GIS) for Alrakhmah Basin Valley Northeast of Iraq
  • 2020
  • Ingår i: Engineering. - USA : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 12:6, s. 315-324
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of water resources in many regions is the main challenge for the human being and to extended investigations. Water resources controlling and management is essential in the areas depending on the seasonal rainfall. This research aims to estimate the surface water runoff for Basin of Alrakhmah Valley located in the southwestern part of Kirkuk Province in northeastern of Iraq. Analyzing of Spatial data and Digital Elevation Model (DEM) data has been conducted using Geographic Information System (GIS) to estimate the hydrological properties for the watershed valley with 158.5 km2 surface area. The results showed that watershed valley type is from the fifth rank with a longitudinal shape and topography percentage of 0.568. The watershed textures found to be 3.24 and the drain density 1.5 at 3.49 river branching. Finally, the annual estimated surface water retreat according to the morpho-hydro climatic elements found to be 0.01286233 milliard cubic meter.
  •  
9.
  • Adamo, Nasrat, et al. (författare)
  • Badush Dam : A Unique Case of Flood Wave Retention Dams Uncertain Future and Problematic Geology
  • 2019
  • Ingår i: Engineering. - USA : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 11:4, s. 189-205
  • Tidskriftsartikel (refereegranskat)abstract
    • Badush Dam is a partially completed dam and a unique case of flood reten- tion dams. Its intended main function is to perform flood protection once in its lifetime; that is if Mosul Dam would collapse. In such a case, the Badush dam would temporarily store the whole flood wave and route it safely to the downstream. For this end, the bulk of the reservoir is left dry, while the re- maining  volume  at  the  lower  part  which  is  intended  for  power  eneration does  not  give  an  economic  justification  for  building  the  full  height  of  the dam. The short duration of the intended use as a protection dam has led to relaxing many design assumptions which have raised concerns over the dam integrity.  The  current  controversy  rages  now  over  whether  to  continue  the construction of the dam as it was first designed or to change all that in view of the similar site geology of Mosul Dam. Mosul dam foundations suffer at the moment from the severe continuous dissolution of the soluble materials in its foundation  leading  to  continued  maintenance  grouting  of  that  foundation. This paper gives an overview of the history of Badush dam, its current design and what new equirements which are needed if it is to replace Mosul Damitself.
  •  
10.
  • Adamo, Nasrat, et al. (författare)
  • Climate Change: Droughts and Increasing Desertification in the Middle East, with Special Reference to Iraq
  • 2022
  • Ingår i: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 14:7, s. 235-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change impacts on Earth’s atmosphere have caused drastic changes in the environment of most regions of the world. The Middle East region ranks among the worst affected of these regions. This has taken forms of increasing atmospheric temperatures, intensive heat waves, decreased and erratic precipitation and general decline in water resources; all leading to frequent and longer droughts, desertification and giving rise to intensive and recurrent (SDS). The present conditions have led to increasing emissions of (GHG) in the earth atmosphere. All future projections especially those using (IPCC) models and emission scenarios indicate that the Middle East will undergo appreciable decrease in winter precipitation with increasing temperature until the end of this century both of which are inductive to increased dryness and desertification. Iraq as one of the countries of this region and due to its geographical location, its dependence mostly on surface water resources originating from neighboring countries, long years of neglect and bad land management put it in the most precarious and unstable position among the other countries of the region. Modelling studies have shown that Iraq is suffering now from excessive dryness and droughts, increasing loss of vegetation cover areas, increasing encroachment of sand dunes on agricultural lands, in addition to severe and frequent (SDS). These negative repercussions and their mitigations require solutions not on the local level alone but collective cooperation and work from all the countries of the region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 99

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy