SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1947 3931 OR L773:1947 394X ;pers:(Abbas Nahla)"

Search: L773:1947 3931 OR L773:1947 394X > Abbas Nahla

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbas, Nahla, et al. (author)
  • Flow Variation of the Major Tributaries of Tigris River Due to Climate Change
  • 2019
  • In: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 11:8, s. 437-442
  • Journal article (peer-reviewed)abstract
    • Iraq relies greatly  on  the  flow of  the  Euphrates  and  Tigris Rivers  and  their tributaries. Five tributaries namely Khabour, Greater Zab, Lesser Zab, AlAd- hiam  and  Daylia,  which  are  the  major  tributaries  of  Tigris  River,  sustain Northern  Iraq  Region,  a  semi-arid,  mainly  a  pastureland.  These  tributaries contribute about 24 km3  of water annually. The discharge in the tributaries, in recent  times,  has  been  suffering  increasing  variability  contributing  to  more severe droughts and floods apparently due to climate change. This is because there were no dams constructed outside Iraq previously. For an appropriate appreciation,  Soil  Water  Assessment Tool  (SWAT)  model  was used  to evaluate  the  impact  of  climate  change  on  their  discharge  for  a  half-centennial lead time to 2046-2064 and a centennial lead time to 2080-2100. The suitability of the model was first evaluated, and then, outputs from six GCMs were incorporated  to  evaluate  the  impacts  of  climate  change  on  water  resources under three emission scenarios: A1B, A2 and B1. The results showed that wa-ter resources are expected to decrease with time.
  •  
2.
  • Abbas, Nahla, et al. (author)
  • Model-Based Assessment of Climate Change Impact on Isaac River Catchment, Queensland
  • 2016
  • In: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 8:7, s. 460-470
  • Journal article (peer-reviewed)abstract
    • Isaac River catchment, which is located within Fitzroy basin in Central Queensland, Australia is mostly a semi-arid region, sparsely populated, but rife with economic activities such as mining, grazing, cropping and production forestry. Hydro-meteorological data over the past several decades reveal that the catchment is experiencing increasing variability in precipitation and streamflow contributing to more severe droughts and floods supposedly due to climate change. The exposure of the economic activities in the catchment to the vagaries of nature and the possible impacts of climate change on the stream flow regime are to be analyzed. For the purpose, SWAT model was adopted to capture the dynamics of the catchment. During calibration of the model 12parameters were found to be significant which yielded a R2 value of 0.73 for calibration and 0.66 for validation. In the next stage, six GCMs from CMIP3 namely, CGCM3.1/T47, CNRM-CM3, GFDLCM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the Fitzroy basin under a very high emissions scenario (A2), a medium emissions scenario(A1B) and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100). All GCMs showed consistent increases in temperature, and as expected, highest rate for A2 and lowest rate for B1. Precipitation predictions were mixed-reductions in A2 and increases in A1B and B1, and more variations in distant future compared to near future. When the projected temperaturesand precipitation were inputted into the SWAT model, and the model outputs were compared with the baseline period (1980-2010), the picture that emerged depicted worsening water resources variability.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Al-Ansari, Nadhir, 1 ... (1)
Al-Ansari, Nadhir (1)
Wasimi, Saleh A. (1)
Wasimi, Saleh (1)
Al-Rawabdeh, Abdulla ... (1)
University
Luleå University of Technology (2)
Language
English (2)
Research subject (UKÄ/SCB)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view