SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1949 2553 ;pers:(Staaf Johan)"

Sökning: L773:1949 2553 > Staaf Johan

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cirenajwis, Helena, et al. (författare)
  • Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy.
  • 2015
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 6:14, s. 12297-12309
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanoma is currently divided on a genetic level according to mutational status. However, this classification does not optimally predict prognosis. In prior studies, we have defined gene expression phenotypes (high-immune, pigmentation, proliferative and normal-like), which are predictive of survival outcome as well as informative of biology. Herein, we employed a population-based metastatic melanoma cohort and external cohorts to determine the prognostic and predictive significance of the gene expression phenotypes. We performed expression profiling on 214 cutaneous melanoma tumors and found an increased risk of developing distant metastases in the pigmentation (HR, 1.9; 95% CI, 1.05-3.28; P=0.03) and proliferative (HR, 2.8; 95% CI, 1.43-5.57; P=0.003) groups as compared to the high-immune response group. Further genetic characterization of melanomas using targeted deep-sequencing revealed similar mutational patterns across these phenotypes. We also used publicly available expression profiling data from melanoma patients treated with targeted or vaccine therapy in order to determine if our signatures predicted therapeutic response. In patients receiving targeted therapy, melanomas resistant to targeted therapy were enriched in the MITF-low proliferative subtype as compared to pre-treatment biopsies (P=0.02). In summary, the melanoma gene expression phenotypes are highly predictive of survival outcome and can further help to discriminate patients responding to targeted therapy.
  •  
2.
  • Karlsson, Anna K, et al. (författare)
  • Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer.
  • 2015
  • Ingår i: Oncotarget. - 1949-2553. ; 6:26, s. 22028-22037
  • Tidskriftsartikel (refereegranskat)abstract
    • Large cell carcinoma with or without neuroendocrine features (LCNEC and LC, respectively) constitutes 3-9% of non-small cell lung cancer but is poorly characterized at the molecular level. Herein we analyzed 41 LC and 32 LCNEC (including 15 previously reported cases) tumors using massive parallel sequencing for mutations in 26 cancer-related genes and gene fusions in ALK, RET, and ROS1. LC patients were additionally subdivided into three immunohistochemistry groups based on positive expression of TTF-1/Napsin A (adenocarcinoma-like, n = 24; 59%), CK5/P40 (squamous-like, n = 5; 12%), or no marker expression (marker-negative, n = 12; 29%). Most common alterations were TP53 (83%), KRAS (22%), MET (12%) mutations in LCs, and TP53 (88%), STK11 (16%), and PTEN (13%) mutations in LCNECs. In general, LCs showed more oncogene mutations compared to LCNECs. Immunomarker stratification of LC revealed oncogene mutations in 63% of adenocarcinoma-like cases, but only in 17% of marker-negative cases. Moreover, marker-negative LCs were associated with inferior overall survival compared with adenocarcinoma-like tumors (p = 0.007). No ALK, RET or ROS1 fusions were detected in LCs or LCNECs. Together, our molecular analyses support that LC and LCNEC tumors follow different tumorigenic paths and that LC may be stratified into molecular subgroups with potential implications for diagnosis, prognostics, and therapy decisions.
  •  
3.
  • Lindquist, Kajsa Ericson, et al. (författare)
  • Clinical framework for next generation sequencing based analysis of treatment predictive mutations and multiplexed gene fusion detection in non-small cell lung cancer
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:21, s. 34796-34810
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision medicine requires accurate multi-gene clinical diagnostics. We describe the implementation of an Illumina TruSight Tumor (TST) clinical NGS diagnostic framework and parallel validation of a NanoString RNA-based ALK, RET, and ROS1 gene fusion assay for combined analysis of treatment predictive alterations in non-small cell lung cancer (NSCLC) in a regional healthcare region of Sweden (Scandinavia). The TST panel was clinically validated in 81 tumors (99% hotspot mutation concordance), after which 533 consecutive NSCLCs were collected during one-year of routine clinical analysis in the healthcare region (~90% advanced stage patients). The NanoString assay was evaluated in 169 of 533 cases. In the 533-sample cohort 79% had 1-2 variants, 12% >2 variants and 9% no detected variants. Ten gene fusions (five ALK, three RET, two ROS1) were detected in 135 successfully analyzed cases (80% analysis success rate). No ALK or ROS1 FISH fusion positive case was missed by the NanoString assay. Stratification of the 533-sample cohort based on actionable alterations in 11 oncogenes revealed that 66% of adenocarcinomas, 13% of squamous carcinoma (SqCC) and 56% of NSCLC not otherwise specified harbored ≥1 alteration. In adenocarcinoma, 10.6% of patients (50.3% if including KRAS) could potentially be eligible for emerging therapeutics, in addition to the 15.3% of patients eligible for standard EGFR or ALK inhibitors. For squamous carcinoma corresponding proportions were 4.4% (11.1% with KRAS) vs 2.2%. In conclusion, multiplexed NGS and gene fusion analyses are feasible in NSCLC for clinical diagnostics, identifying notable proportions of patients potentially eligible for emerging molecular therapeutics.
  •  
4.
  • Ringnér, Markus, et al. (författare)
  • Consensus of gene expression phenotypes and prognostic risk predictors in primary lung adenocarcinoma
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:33, s. 52957-52973
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptional profiling of lung adenocarcinomas has identified numerous gene expression phenotype (GEP) and risk prediction (RP) signatures associated with patient outcome. However, classification agreement between signatures, underlying transcriptional programs, and independent signature validation are less studied. We classified 2395 transcriptional adenocarcinoma profiles, assembled from 17 public cohorts, using 11 GEP and seven RP signatures, finding that 16 signatures were associated with patient survival in the total cohort and in multiple individual cohorts. For significant signatures, total cohort hazard ratios were ~2 in univariate analyses (mean=1.95, range=1.4-2.6). Strong classification agreement between signatures was observed, especially for predicted low-risk patients by adenocarcinoma-derived signatures. Expression of proliferation-related genes correlated strongly with GEP subtype classifications and RP scores, driving the gene signature association with prognosis. A three-group consensus definition of samples across 10 GEP classifiers demonstrated aggregation of samples with specific smoking patterns, gender, and EGFR/KRAS mutations, while survival differences were only significant when patients were divided into low- or high-risk. In summary, our study demonstrates a consensus between GEPs and RPs in lung adenocarcinoma through a common underlying transcriptional program. This consensus generalizes reported problems with current signatures in a clinical context, stressing development of new adenocarcinoma-specific single sample predictors for clinical use.
  •  
5.
  • Thorén, Matilda Munksgaard, et al. (författare)
  • Myc-induced glutaminolysis bypasses HIF-driven glycolysis in hypoxic small cell lung carcinoma cells
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:30, s. 48983-48995
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously demonstrated that small cell lung carcinoma (SCLC) cells lack HIF-2α protein expression, whereas HIF-1α in these cells is expressed at both acute and prolonged hypoxia. Here we show that low HIF2A expression correlates with high expression of MYC genes. Knockdown of HIF1A expression had no or limited effect on cell survival and growth in vitro. Unexpectedly, hypoxic ATP levels were not affected by HIF-1α knockdown and SCLC cell viability did not decrease upon glucose deprivation. In line with these in vitro data, xenograft tumor-take and growth were not significantly affected by repressed HIF1A expression. Glutamine withdrawal drastically decreased SCLC cell proliferation and increased cell death at normoxia and hypoxia in a HIF-independent fashion and the dependence on glutaminolysis was linked to amplification of either MYC or MYCL. Downregulation of GLS expression, regulating the first step of the glutaminolysis pathway, in MYC/MYCL overexpressing SCLC cells resulted in both impaired growth and increased cell death. Our results suggest that MYC/MYCL overexpression in SCLC cells overrides the need of HIF-1 activity in response to hypoxia by inducing glutaminolysis and lipogenesis. Targeting the glutaminolysis pathway might hence be a novel approach to selectively kill MYC amplified SCLC cells in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy