SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2041 1723 OR L773:2041 1723 ;lar1:(du)"

Sökning: L773:2041 1723 OR L773:2041 1723 > Högskolan Dalarna

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Adami, C., et al. (författare)
  • Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything
  • 2013
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Zero-determinant strategies are a new class of probabilistic and conditional strategies that are able to unilaterally set the expected payoff of an opponent in iterated plays of the Prisoner's Dilemma irrespective of the opponent's strategy (coercive strategies), or else to set the ratio between the player's and their opponent's expected payoff (extortionate strategies). Here we show that zero-determinant strategies are at most weakly dominant, are not evolutionarily stable, and will instead evolve into less coercive strategies. We show that zero-determinant strategies with an informational advantage over other players that allows them to recognize each other can be evolutionarily stable (and able to exploit other players). However, such an advantage is bound to be short-lived as opposing strategies evolve to counteract the recognition. © 2013 Macmillan Publishers Limited. All rights reserved.
  •  
3.
  • Dekkers, Koen, et al. (författare)
  • An online atlas of human plasma metabolite signatures of gut microbiome composition.
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Human gut microbiota produce a variety of molecules, some of which enter the bloodstream and impact health. Conversely, dietary or pharmacological compounds may affect the microbiota before entering the circulation. Characterization of these interactions is an important step towards understanding the effects of the gut microbiota on health. In this cross-sectional study, we used deep metagenomic sequencing and ultra-high-performance liquid chromatography linked to mass spectrometry for a detailed characterization of the gut microbiota and plasma metabolome, respectively, of 8583 participants invited at age 50 to 64 from the population-based Swedish CArdioPulmonary bioImage Study. Here, we find that the gut microbiota explain up to 58% of the variance of individual plasma metabolites and we present 997 associations between alpha diversity and plasma metabolites and 546,819 associations between specific gut metagenomic species and plasma metabolites in an online atlas ( https://gutsyatlas.serve.scilifelab.se/ ). We exemplify the potential of this resource by presenting novel associations between dietary factors and oral medication with the gut microbiome, and microbial species strongly associated with the uremic toxin p-cresol sulfate. This resource can be used as the basis for targeted studies of perturbation of specific metabolites and for identification of candidate plasma biomarkers of gut microbiota composition.
  •  
4.
  •  
5.
  • Morris, Andrew P, et al. (författare)
  • Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development.
  •  
6.
  • Nowak, Christoph, et al. (författare)
  • A Mendelian randomization study of the effects of blood lipids on breast cancer risk
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies have reported inconsistent associations between circulating lipids and breast cancer risk. Using results from >400,000 participants in two-sample Mendelian randomization, we show that genetically raised LDL-cholesterol is associated with higher risk of breast cancer (odds ratio, OR, per standard deviation, 1.09, 95% confidence interval, 1.02-1.18, P = 0.020) and estrogen receptor (ER)-positive breast cancer (OR 1.14 [1.05-1.24] P = 0.004). Genetically raised HDL-cholesterol is associated with higher risk of ER-positive breast cancer (OR 1.13 [1.01-1.26] P = 0.037). HDL-cholesterol-raising variants in the gene encoding the target of CETP inhibitors are associated with higher risk of breast cancer (OR 1.07 [1.03-1.11] P = 0.001) and ER-positive breast cancer (OR 1.08 [1.03-1.13] P = 0.001). LDL-cholesterol-lowering variants mimicking PCSK9 inhibitors are associated (P = 0.014) with lower breast cancer risk. We find no effects related to the statin and ezetimibe target genes. The possible risk-promoting effects of raised LDL-cholesterol and CETP-mediated raised HDL-cholesterol have implications for breast cancer prevention and clinical trials.
  •  
7.
  • Patxot, Marion, et al. (författare)
  • Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only ≤10% of the genetic variation captured for height, body mass index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32–44% to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-source software (GMRM) provides a scalable alternative to current approaches for biobank data.
  •  
8.
  • Schlosser, P, et al. (författare)
  • Meta-analyses identify DNA methylation associated with kidney function and damage
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 7174-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.
  •  
9.
  • Shah, S, et al. (författare)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
10.
  • Teumer, A, et al. (författare)
  • Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4130-
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy