SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2041 210X OR L773:2041 210X ;hsvcat:4"

Sökning: L773:2041 210X OR L773:2041 210X > Lantbruksvetenskap

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Mattias, et al. (författare)
  • Ecological production functions for biological control services in agricultural landscapes
  • 2014
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 5:3, s. 243-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Research relating to ecosystem services has increased, partly because of drastic declines in biodiversity in agricultural landscapes. However, the mechanistic linkages between land use, biodiversity and service provision are poorly understood and synthesized. This is particularly true for many ecosystem services provided by mobile organisms such as natural enemies to crop pests. These species are not only influenced by local land use but also by landscape composition at larger spatial scales. We present a conceptual ecological production function framework for predicting land-use impact on biological control of pests by natural enemies. We develop a novel, mechanistic landscape model for biological control of cereal aphids, explicitly accounting for the influence of landscape composition on natural enemies varying in mobility, feeding rates and other life history traits. Finally, we use the model to map biological control services across cereal fields in a Swedish agricultural region with varying landscape complexity. The model predicted that biological control would reduce crop damage by 45-70% and that the biological control effect would be higher in complex landscapes. In a validation with independent data, the model performed well and predicted a significant proportion of biological control variation in cereal fields. However, much variability remains to be explained, and we propose that the model could be improved by refining the mechanistic understanding of predator dynamics and accounting for variation in aphid colonization. We encourage scientists working with biological control to adopt the conceptual framework presented here and to develop production functions for other crop-pest systems. If this kind of ecological production function is combined with production functions for other services, the joint model will be a powerful tool for managing ecosystem services and planning for sustainable agriculture at the landscape scale.
  •  
2.
  • Bengtsson-Palme, Johan, 1985, et al. (författare)
  • Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data
  • 2013
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 4:10, s. 914-919
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the primary choice for molecular identification of fungi. Its two highly variable spacers (ITS1 and ITS2) are usually species specific, whereas the intercalary 5.8S gene is highly conserved. For sequence clustering and blast searches, it is often advantageous to rely on either one of the variable spacers but not the conserved 5.8S gene. To identify and extract ITS1 and ITS2 from large taxonomic and environmental data sets is, however, often difficult, and many ITS sequences are incorrectly delimited in the public sequence databases. We introduce ITSx, a Perl-based software tool to extract ITS1, 5.8S and ITS2 – as well as full-length ITS sequences – from both Sanger and high-throughput sequencing data sets. ITSx uses hidden Markov models computed from large alignments of a total of 20 groups of eukaryotes, including fungi, metazoans and plants, and the sequence extraction is based on the predicted positions of the ribosomal genes in the sequences. ITSx has a very high proportion of true-positive extractions and a low proportion of false-positive extractions. Additionally, process parallelization permits expedient analyses of very large data sets, such as a one million sequence amplicon pyrosequencing data set. ITSx is rich in features and written to be easily incorporated into automated sequence analysis pipelines. ITSx paves the way for more sensitive blast searches and sequence clustering operations for the ITS region in eukaryotes. The software also permits elimination of non-ITS sequences from any data set. This is particularly useful for amplicon-based next-generation sequencing data sets, where insidious non-target sequences are often found among the target sequences. Such non-target sequences are difficult to find by other means and would contribute noise to diversity estimates if left in the data set.
  •  
3.
  • Gardner, Emma, et al. (författare)
  • Reliably predicting pollinator abundance : Challenges of calibrating process-based ecological models
  • 2020
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 11:12, s. 1673-1689
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollination is a key ecosystem service for global agriculture but evidence of pollinator population declines is growing. Reliable spatial modelling of pollinator abundance is essential if we are to identify areas at risk of pollination service deficit and effectively target resources to support pollinator populations. Many models exist which predict pollinator abundance but few have been calibrated against observational data from multiple habitats to ensure their predictions are accurate. We selected the most advanced process-based pollinator abundance model available and calibrated it for bumblebees and solitary bees using survey data collected at 239 sites across Great Britain. We compared three versions of the model: one parameterised using estimates based on expert opinion, one where the parameters are calibrated using a purely data-driven approach and one where we allow the expert opinion estimates to inform the calibration process. All three model versions showed significant agreement with the survey data, demonstrating this model's potential to reliably map pollinator abundance. However, there were significant differences between the nesting/floral attractiveness scores obtained by the two calibration methods and from the original expert opinion scores. Our results highlight a key universal challenge of calibrating spatially explicit, process-based ecological models. Notably, the desire to reliably represent complex ecological processes in finely mapped landscapes necessarily generates a large number of parameters, which are challenging to calibrate with ecological and geographical data that are often noisy, biased, asynchronous and sometimes inaccurate. Purely data-driven calibration can therefore result in unrealistic parameter values, despite appearing to improve model-data agreement over initial expert opinion estimates. We therefore advocate a combined approach where data-driven calibration and expert opinion are integrated into an iterative Delphi-like process, which simultaneously combines model calibration and credibility assessment. This may provide the best opportunity to obtain realistic parameter estimates and reliable model predictions for ecological systems with expert knowledge gaps and patchy ecological data.
  •  
4.
  • Falster, Daniel S., et al. (författare)
  • plant : A package for modelling forest trait ecology and evolution
  • 2016
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 7:2, s. 136-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Population dynamics in forests are strongly size-structured: larger plants shade smaller plants while also expending proportionately more energy on building and maintaining woody stems. Although the importance of size structure for demography is widely recognized, many models either omit it entirely or include only coarse approximations. Here, we introduce the plant package, an extensible framework for modelling size- and trait-structured demography, ecology and evolution in simulated forests. At its core, plant is an individual-based model where plant physiology and demography are mediated by traits. Individual plants from multiple species can be grown in isolation, in patches of competing plants or in metapopulations under a disturbance regime. These dynamics can be integrated into metapopulation-level estimates of invasion fitness and vegetation structure. Because fitness emerges as a function of traits, plant provides a novel arena for exploring eco-evolutionary dynamics. plant is an open source R package and is available at . Accessed from R, the core routines in plant are written in C++. The package provides for alternative physiologies and for capturing trade-offs among parameters. A detailed test suite is provided to ensure correct behaviour of the code. plant provides a transparent platform for investigating how physiological rules and functional trade-offs interact with competition and disturbance regimes to influence vegetation demography, structure and diversity.
  •  
5.
  • Goodman, Rosa (författare)
  • Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR
  • 2018
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 9, s. 223-234
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Tropical forest biomass is a crucial component of global carbon emission estimations. However, calibration and validation of such estimates require accurate and effective methods to estimate in situ above-ground biomass (AGB). Present methods rely on allometric models that are highly uncertain for large tropical trees. Terrestrial laser scanning (TLS) tree modelling has demonstrated to be more accurate than these models to infer forest AGB. Nevertheless, applying TLS methods on tropical large trees is still challenging. We propose a method to estimate AGB of large tropical trees by three-dimensional (3D) tree modelling of TLS point clouds.2. Twenty-nine plots were scanned with a TLS in three study sites (Peru, Indonesia and Guyana). We identified the largest tree per plot (mean diameter at breast height of 73.5cm), extracted its point cloud and calculated its volume by 3D modelling its structure using quantitative structure models (QSM) and converted to AGB using species-specific wood density. We also estimated AGB using pantropical and local allometric models. To assess the accuracy of our and allometric methods, we harvest the trees and took destructive measurements.3. AGB estimates by the TLS-QSM method showed the best agreement in comparison to destructive harvest measurements (28.37% coefficient of variation of root mean square error [CV-RMSE] and concordance correlation coefficient [CCC] of 0.95), outperforming the pantropical allometric models tested (35.6%-54.95% CV-RMSE and CCC of 0.89-0.73). TLS-QSM showed also the lowest bias (overall underestimation of 3.7%) and stability across tree size range, contrasting with the allometric models that showed a systematic bias (overall underestimation ranging 15.2%-35.7%) increasing linearly with tree size. The TLS-QSM method also provided accurate tree wood volume estimates (CV RMSE of 23.7%) with no systematic bias regardless the tree structural characteristics.4. Our TLS-QSM method accounts for individual tree biophysical structure more effectively than allometric models, providing more accurate and less biased AGB estimates for large tropical trees, independently of their morphology. This non-destructive method can be further used for testing and calibrating new allometric models, reducing the current under-representation of large trees in and enhancing present and past estimates of forest biomass and carbon emissions from tropical forests.
  •  
6.
  • Rönnegård, Lars, et al. (författare)
  • Increasing the power of genome wide association studies in natural populations using repeated measures - evaluation and implementation
  • 2016
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 7:7, s. 792-799
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms' ability to adapt to a changing environment. In long-term studies of natural populations, individuals are often marked at one point in their life and then repeatedly recaptured. It is therefore essential that a method for GWAS includes the process of repeated sampling. In a GWAS, the effects of thousands of single-nucleotide polymorphisms (SNPs) need to be fitted and any model development is constrained by the computational requirements. A method is therefore required that can fit a highly hierarchical model and at the same time is computationally fast enough to be useful. 2. Our method fits fixed SNP effects in a linear mixed model that can include both random polygenic effects and permanent environmental effects. In this way, the model can correct for population structure and model repeated measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a generalized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on observed genotypes from a long-term study of collared flycatchers in Sweden. 3. The method we present here was successful in estimating permanent environmental effects from simulated repeated measures data. Additionally, we found that especially for variable phenotypes having large variation between years, the repeated measurements model has a substantial increase in power compared to a model using average phenotypes as a response. 4. The method is available in the R package RepeatABEL. It increases the power in GWAS having repeated measures, especially for long-term studies of natural populations, and the R implementation is expected to facilitate modelling of longitudinal data for studies of both animal and human populations.
  •  
7.
  • Ståhl, Göran, et al. (författare)
  • Informative plot sizes in presence-absence sampling of forest floor vegetation
  • 2017
  • Ingår i: Methods in Ecology and Evolution. - Hoboken : British Ecological Society. - 2041-210X. ; 8:10, s. 1284-1291
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Plant communities are attracting increased interest in connection with forest and landscape inventories due to society’s interest in ecosystem services. However, the acquisition of accurate information about plant communities poses several methodological challenges. Here, we investigate the use of presence-absence sampling with the aim to monitor state and change in plant density. We study what plot sizes are informative, i.e. the estimators should have as high precision as possible.2. Plant occurrences were modelled through different Poisson processes and tests were developed for assessing the plausibility of the model assumptions. Optimum plot sizes were determined by minimizing the variance of the estimators. While state estimators of similar kind as ours have been proposed in previous studies, our tests and change estimation procedures are new.3. We found that the most informative plot size for state estimation is 1.6 divided by the plant density, i.e. if the true density is 1 plant per square metre the optimum plot size is 1.6 square metres. This is in accordance with previous findings. More importantly, the most informative plot size for change estimation was smaller and depended on the change patterns. We provide theoretical results as well as some empirical results based on data from the Swedish National Forest Inventory.4. Use of too small or too large plots resulted in poor precision of the density (and density change) estimators. As a consequence, a range of different plot sizes would be required for jointly monitoring both common and rareplants using presence-absence sampling in monitoring programmes.
  •  
8.
  • Ståhl, Göran, et al. (författare)
  • Presence-absence sampling for estimating plant density using survey data with variable plot size
  • 2020
  • Ingår i: Methods in Ecology and Evolution. - : John Wiley & Sons. - 2041-210X. ; 11:4, s. 580-590
  • Tidskriftsartikel (refereegranskat)abstract
    • Presence–absence sampling is an important method for monitoring state and change of both individual plant species and communities. With this method, only the presence or absence of the target species is recorded on plots and thus the method is straightforward to apply and less prone to surveyor judgement compared to other vegetation monitoring methods. However, in the basic setting, all plots must be equally large or otherwise it is unclear how data should be analysed. In this study, we propose and evaluate five different methods for estimating plant density based on presence–absence registrations from surveys with variable plot sizes.Using artificial plant population data as well as empirical data from the Swedish National Forest Inventory, we evaluated the performance of the proposed methods. The main analysis was conducted through sampling simulation in artificial populations, whereby bias and variance of density estimators for the different methods were quantified and compared.Both for state and change estimation of plant density, we found that the best method to handle variable plot size was to perform generalized least squares regression, using plot size as an independent variable. Methods where plots smaller than a certain threshold were excluded or their registrations recalculated were, however, almost as good. Using all registrations as if they were obtained from plots with the nominal plot size resulted in substantial bias.Our findings are important for plant population studies in a wide range of environmental monitoring programmes. In these programmes, plots are typically randomly laid out and may be located across boundaries between different land‐use or land‐cover classes, resulting in subplots of variable size. Such splitting of plots is common when large plots are used, for example, with the 100 m2 plots used in the Swedish National Forest Inventory. Our methods overcome problems to estimate plant density from presence–absence data observed in plots that vary in size.
  •  
9.
  • Whitlock, Rebecca, et al. (författare)
  • Integrating genetic analysis of mixed populations with a spatially explicit population dynamics model
  • 2018
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 9, s. 1017-1035
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Inferring the dynamics of populations in time and space is a central challenge in ecology. Intra-specific structure (for example genetically distinct sub-populations or meta-populations) may require methods that can jointly infer the dynamics of multiple populations. This is of particular importance for harvested species, for which management must balance utilization of productive populations with protection of weak ones.2. Here we present a novel method for simultaneous learning about the spatio-temporal dynamics of multiple populations that combines genetic data with prior information about abundance and movement, akin to an integrated population modelling approach. We apply the Bayesian genetic mixed stock analysis to 17 wild and 10 hatchery-reared Baltic salmon (S. salar) stocks, quantifying uncertainty in stock composition in time and space, and in population dynamics parameters such as migration timing and speed.3. The genetic data were informative about stock-specific movement patterns, updating priors for migration path, timing and speed. Use of a population dynamics model allowed robust interpolation of expected catch composition at areas and times with no genetic observations. Our results indicate that the commonly used "equal prior probabilities" assumption may not be appropriate for all mixed stock analyses: incorporation of prior information about stock abundance and movement resulted in more plausible and precise estimates of mixture compositions in time and space.4. The model we present here forms the basis for optimizing the spatial and temporal allocation of harvest to support the management of mixed populations of migratory species.
  •  
10.
  • Lindström, Tom, et al. (författare)
  • A spectral and Bayesian approach for analysis of fluctuations and synchrony in ecological datasets
  • 2012
  • Ingår i: Methods in Ecology and Evolution. - : Wiley-Blackwell. - 2041-210X. ; 3:6, s. 1019-1027
  • Tidskriftsartikel (refereegranskat)abstract
    • Autocorrelation within ecological time series and synchrony between them may provide insight into the main drivers of observed dynamics. We here present methods that analyse autocorrelation and synchrony in ecological datasets using a spectral approach combined with Bayesian inference. To exemplify, we implement the method on dendrochronological data of the pedunculate oak (Quercus robur). The data consist of 110 years of growth of 10 live trees and seven trees that died during a synchronized oak death in Sweden in c. 2002-2007. We find that the highest posterior density is found for a noise colour of tree growth of gamma approximate to 0.95 (i.e. pink noise) with little difference between trees, suggesting climatic variation as a driving factor. This is further supported by the presence of synchrony, which we estimate based on phase-shift analysis. We conclude that the synchrony is time-scale dependent with higher synchrony at larger time-scales. We further show that there is no difference between the growth patterns of the alive and dead tree groups. This suggests that the trees were driven by the same factors prior to the synchronized death. We argue that this method is a promising approach for linking theoretical models with empirical data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Jonsson, Bengt-Gunna ... (2)
Grafström, Anton (2)
Dahlgren, Jonas (2)
Ståhl, Göran (2)
Esseen, Per-Anders (2)
Ekström, Magnus, 196 ... (2)
visa fler...
Abarenkov, Kessy (1)
Bengtsson-Palme, Joh ... (1)
Ryberg, Martin, 1976 (1)
Kristiansson, Erik, ... (1)
Unterseher, Martin (1)
Nilsson, R. Henrik, ... (1)
Veldre, Vilmar (1)
Sánchez-García, Mari ... (1)
Smith, Henrik G. (1)
Lindström, Tom (1)
Clough, Yann (1)
Ellegren, Hans (1)
Bommarco, Riccardo (1)
Bengtsson, Jan (1)
Dannewitz, Johan (1)
Palm, Stefan (1)
Smith, Henrik (1)
Wennergren, Uno (1)
Rönnegård, Lars (1)
Jonsson, Mattias (1)
McKerchar, Megan (1)
Potts, Simon G. (1)
Wäckers, Felix (1)
Wilby, Andrew (1)
Garratt, Michael P.D ... (1)
Godhe, Anna, 1967 (1)
Olsson, Ola (1)
Bergman, Karl-Olof (1)
Winqvist, Camilla (1)
De Wit, Pierre, 1978 (1)
Qvarnström, Anna (1)
Stone, Graham N. (1)
Sisson, Scott A (1)
Ekbom, Barbara (1)
Hartmann, Martin (1)
Eriksson, Martin, 19 ... (1)
Wang, Zheng, 1980 (1)
Branco, Sara (1)
Ebersberger, Ingo (1)
Sousa, Filipe de, 19 ... (1)
Amend, Anthony S. (1)
Jumpponen, Ari (1)
Bertrand, Yann (1)
Sanli, Kemal, 1986 (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (6)
Umeå universitet (3)
Uppsala universitet (2)
Lunds universitet (2)
Mittuniversitetet (2)
Göteborgs universitet (1)
visa fler...
Linköpings universitet (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy