SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2041 210X OR L773:2041 210X ;pers:(Brännström Åke)"

Sökning: L773:2041 210X OR L773:2041 210X > Brännström Åke

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pontarp, Mikael, et al. (författare)
  • Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)
  • 2019
  • Ingår i: Methods in Ecology and Evolution. - : John Wiley & Sons. - 2041-210X. ; 10:4, s. 450-460
  • Forskningsöversikt (refereegranskat)abstract
    • Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as a mechanistic and causal link between process and pattern is often lacking, and evolutionary processes and trophic interactions are ignored.Here, we revisit the current knowledge on community assembly across scales and, in line with several reviews that have outlined challenges associated with current inference techniques, we identify a discrepancy between the current paradigm of eco-evolutionary community assembly and current inference techniques that focus mainly on competition and habitat filtering. We argue that trait-based dynamic eco-evolutionary models in combination with recently developed model fitting and model evaluation techniques can provide avenues for more accurate, reliable, and inclusive inference. To exemplify, we implement a trait-based, spatially explicit eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources.Through a case study on inference of prey and predator niche width in an eco-evolutionary context, we demonstrate how inclusive and mechanistic approaches-eco-evolutionary modelling and Approximate Bayesian Computation (ABC)-can enable inference of assembly processes that have been largely neglected by traditional techniques despite the ubiquity of such processes.Much literature points to the limitations of current inference techniques, but concrete solutions to such limitations are few. Many of the challenges associated with novel inference techniques are, however, already to some extent resolved in other fields and thus ready to be put into action in a more formal way for inferring processes of community assembly from signals in various data sources.
  •  
2.
  • Falster, Daniel S., et al. (författare)
  • plant : A package for modelling forest trait ecology and evolution
  • 2016
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 7:2, s. 136-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Population dynamics in forests are strongly size-structured: larger plants shade smaller plants while also expending proportionately more energy on building and maintaining woody stems. Although the importance of size structure for demography is widely recognized, many models either omit it entirely or include only coarse approximations. Here, we introduce the plant package, an extensible framework for modelling size- and trait-structured demography, ecology and evolution in simulated forests. At its core, plant is an individual-based model where plant physiology and demography are mediated by traits. Individual plants from multiple species can be grown in isolation, in patches of competing plants or in metapopulations under a disturbance regime. These dynamics can be integrated into metapopulation-level estimates of invasion fitness and vegetation structure. Because fitness emerges as a function of traits, plant provides a novel arena for exploring eco-evolutionary dynamics. plant is an open source R package and is available at . Accessed from R, the core routines in plant are written in C++. The package provides for alternative physiologies and for capturing trade-offs among parameters. A detailed test suite is provided to ensure correct behaviour of the code. plant provides a transparent platform for investigating how physiological rules and functional trade-offs interact with competition and disturbance regimes to influence vegetation demography, structure and diversity.
  •  
3.
  • Zhang, Lai, et al. (författare)
  • On the performance of four methods for the numerical solution of ecologically realistic size-structured population models
  • 2017
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 8:8, s. 948-956
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Size-structured population models (SSPMs) are widely used in ecology to account for intraspecific variation in body size. Three characteristic features of size-structured populations are the dependence of life histories on the entire size distribution, intrinsic population renewal through the birth of new individuals, and the potential accumulation of individuals with similar body sizes due to determinate or stunted growth. Because of these three features, numerical methods that work well for structurally similar transport equations may fail for SSPMs and other transport-dominated models with high ecological realism, and thus their computational performance needs to be critically evaluated.2. Here, we compare the performance of four numerical solution schemes, the fixed-mesh upwind (FMU) method, the moving-mesh upwind (MMU) method, the characteristic method (CM), and the Escalator Boxcar Train (EBT) method, in numerically solving three reference problems that are representative of ecological systems in the animal and plant kingdoms. The MMU method is here applied for the first time to SSPMs, whereas the three other methods have been employed by other authors.3. Our results show that the EBT method performs best, except for one of the three reference problems, in which size-asymmetric competition affects individual growth rates. For that reference problem, the FMU method performs best, closely followed by the MMU method. Surprisingly, the CM method does not perform well for any of the three reference problems.4. We conclude that life-history features should be carefully considered when choosing the numerical method for analyzing ecologically realistic size-structured population models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy