SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2045 2322 ;pers:(Hultman Lars)"

Sökning: L773:2045 2322 > Hultman Lars

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alling, Björn, et al. (författare)
  • A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary (M1-xMxB2)-M-1-B-2 alloys with AlB2 type structure
  • 2015
  • Ingår i: Scientific Reports. - : Nature Publishing Group: Open Access Journals - Option C / Nature Publishing Group. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary (M1-xMxB2)-M-1-B-2 alloys comprising (MB2)-B-i (M-i = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at E-F in TiB2, ZrB2, and HfB2.
  •  
2.
  • Garbrecht, Magnus, et al. (författare)
  • Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 1014 m-2; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice.
  •  
3.
  • Ghafoor, Naureen, et al. (författare)
  • Self-structuring in Zr1-xAlxN films as a function of composition and growth temperature
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructure formation via surface-diffusion-mediated segregation of ZrN and AIN in Zr1-xAlxN films during high mobility growth conditions is investigated for 0 amp;lt;= x amp;lt;= 1. The large immiscibility combined with interfacial surface and strain energy balance resulted in a hard nanolabyrinthine lamellar structure with well-defined (semi) coherent c-ZrN and w-AlN domains of sub-nm to similar to 4 nm in 0.2 amp;lt;= x amp;lt;= 0.4 films, as controlled by atom mobility. For high AlN contents (x amp;gt; 0.49) Al-rich ZrN domains attain wurtzite structure within fine equiaxed nanocomposite wurtzite lattice. Slow diffusion in wurtzite films points towards crystal structure dependent driving force for decomposition. The findings of unlikelihood of isostructural decomposition in c-Zr1-xAlxN, and stability of w-Zr1-xAlxN (in large x films) is complemented with first principles calculations.
  •  
4.
  • Greczynski, Grzegorz, et al. (författare)
  • Selectable phase formation in VAlN thin films by controlling Al+ subplantation depth
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a thin film synthesis technique which allows for unprecedented control over the crystalline phase formation in metastable transition metal nitride based layers. For the model material system of V0.26Al0.74N, a complete transition from hexagonal to supersaturated cubic structure is achieved by tuning the incident energy, hence subplantation depth, of Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of Al target and direct current magnetron sputtering of V target in Ar/N-2 gas mixture. These findings enable the phase selective synthesis of novel metastable materials that combine excellent mechanical properties, thermal stability, and oxidation resistance.
  •  
5.
  • Greczynski, Grzegorz, et al. (författare)
  • The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy
  • 2021
  • Ingår i: Scientific Reports. - : Nature Research. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical state analysis in X-ray photoelectron spectroscopy (XPS) relies on assigning well-defined binding energy values to core level electrons originating from atoms in particular bonding configurations. Here, we present direct evidence for the violation of this paradigm. It is shown that the C 1s peak due to C-C/C-H bonded atoms from adventitious carbon (AdC) layers accumulating on Al and Au foils splits into two distinctly different contributions, as a result of vacuum level alignment at the AdC/foil interface. The phenomenon is observed while simultaneously recording the spectrum from two metal foils in electric contact with each other. This finding exposes fundamental problems with the reliability of reported XPS data as C 1s peak of AdC is routinely used for binding energy scale referencing. The use of adventitious carbon in XPS should thus be discontinued as it leads to nonsense results. Consequently, ISO and ASTM charge referencing guides need to be rewritten.
  •  
6.
  • Kota, Sankalp, et al. (författare)
  • Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB
  • 2016
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 6:26475
  • Tidskriftsartikel (refereegranskat)abstract
    • The MAlB phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36-0.49 mu Omega m) and - like a metal - drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm(-1)K(-1) at 26 degrees C). In the 25-1300 degrees C temperature range, its thermal expansion coefficient is 9.5 x 10(-6) K-1. Preliminary results suggest the compound is stable to at least 1400 degrees C in inert atmospheres. Moderately low Vickers hardness values of 10.6 +/- 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 +/- 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures.
  •  
7.
  • Li, Xiao, et al. (författare)
  • Dense, single-phase, hard, and stress-free Ti0.32Al0.63W0.05N films grown by magnetron sputtering with dramatically reduced energy consumption
  • 2022
  • Ingår i: Scientific Reports. - : Nature Portfolio. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The quest for lowering energy consumption during thin film growth, as by magnetron sputtering, becomes of particular importance in view of sustainable development goals. A recently proposed solution combining high power impulse and direct current magnetron sputtering (HiPIMS/DCMS) relies on the use of heavy metal-ion irradiation, instead of conventionally employed resistive heating, to provide sufficient adatom mobility, in order to obtain high-quality dense films. The major fraction of process energy is used at the sputtering sources rather than for heating the entire vacuum vessel. The present study aims to investigate the W+ densification effects as a function of increasing Al content in (Ti1-yAly)(1-x)WxN films covering the entire range up to the practical solubility limits (y similar to 0.67). Layers with high Al content are attractive to industrial applications as the high temperature oxidation resistance increases with increasing Al concentration. The challenge is, however, to avoid precipitation of the hexagonal wurtzite AIN phase, which is softer. We report here that (T1-yAly)(1-x)WxN layers with y= 0.66 and x= 0.05 grown by a combination ofW-HiPIMS and TiAI-DCMS with the substrate bias V-s synchronized to the W+-rich fluxes (to provide mobility in the absence of substrate heating) possess single-phase NaCl-structure, as confirmed by XRD and SAED patterns. The evidence provided by XTEM images and the residual oxygen content obtained from ERDA analyses reveals that the alloy films are dense without discernable porosity. The nanoindentation hardness is comparable to that of TiAlN films grown at 400-500 degrees C, while the residual stresses are very low. We established that the adatom mobility due to the heavy ion W+ irradiation (in place of resistive heating) enables the growth of high-quality coatings at substrate temperatures not exceeding 130 degrees C provided that the W+ momentum transfer per deposited metal atom is sufficiently high. The benefit of this novel film growth approach is not only the reduction of the process energy consumption by 83%, but also the possibility to coat temperature-sensitive substrates.
  •  
8.
  • Mühlbacher, Marlene, et al. (författare)
  • Enhanced Ti0.84Ta0.16N diffusion barriers, grown by a hybrid sputtering technique with no substrate heating, between Si(001) wafers and Cu overlayers
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare the performance of conventional DC magnetron sputter-deposited (DCMS) TiN diffusion barriers between Cu overlayers and Si(001) substrates with Ti0.84Ta0.16N barriers grown by hybrid DCMS/high-power impulse magnetron sputtering (HiPIMS) with substrate bias synchronized to the metal-rich portion of each pulse. DCMS power is applied to a Ti target, and HiPIMS applied to Ta. No external substrate heating is used in either the DCMS or hybrid DCMS/HiPIMS process in order to meet future industrial thermal-budget requirements. Barrier efficiency in inhibiting Cu diffusion into Si(001) while annealing for 1 hour at temperatures between 700 and 900 degrees C is investigated using scanning electron microscopy, X-ray diffraction, four-point-probe sheet resistance measurements, transmission electron microscopy, and energy-dispersive X-ray spectroscopy profiling. Ti0.84Ta0.16N barriers are shown to prevent large-scale Cu diffusion at temperatures up to 900 degrees C, while conventional TiN barriers fail at amp;lt;= 700 degrees C. The improved performance of the Ti0.84Ta0.16N barrier is due to film densification resulting from HiPIMS pulsed irradiation of the growing film with synchronized Ta ions. The heavy ion bombardment dynamically enhances near-surface atomic mixing during barrier-layer deposition.
  •  
9.
  • Palisaitis, Justinas, et al. (författare)
  • Direct observation of spinodal decomposition phenomena in InAlN alloys during in-situ STEM heating
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The spinodal decomposition and thermal stability of thin In0.72Al0.28N layers and In0.72Al0.28N/AlN superlattices with AlN(0001) templates on Al2O3(0001) substrates was investigated by in-situ heating up to 900 degrees C. The thermally activated structural and chemical evolution was investigated in both plan-view and cross-sectional geometries by scanning transmission electron microscopy in combination with valence electron energy loss spectroscopy. The plan-view observations demonstrate evidence for spinodal decomposition of metastable In0.72Al0.28N after heating at 600 degrees C for 1 h. During heating compositional modulations in the range of 2-3 nm-size domains are formed, which coarsen with applied thermal budgets. Cross-sectional observations reveal that spinodal decomposition begin at interfaces and column boundaries, indicating that the spinodal decomposition has a surface-directed component.
  •  
10.
  • Serban, Alexandra, et al. (författare)
  • Selective-area growth of single-crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective-area growth (SAG) of single-crystal wurtzite GaN nanorods (NRs) directly onto Si(001) substrates with un-etched native SiOx amorphous layer, assisted by a patterning TiNx mask fabricated by nanosphere lithography (NSL), has been realized by reactive magnetron sputter epitaxy (MSE). The GaN NRs were grown vertically to the substrate surface with the growth direction along c-axis in the well-defined nano-opening areas. A 5-step structural and morphological evolution of the SAG NRs observed at different sputtering times depicts a comprehensive growth model, listed in sequence as: formation of a polycrystalline wetting layer, predominating c-axis oriented nucleation, coarsening and coalescence of multi-islands, single NR evolution, and finally quasi-equilibrium crystal shape formation. Room-temperature cathodoluminescence spectroscopy shows a strong GaN bandedge emission with a uniform luminescence across the NRs, indicating that the SAG NRs are grown with high quality and purity. In addition, single-longitudinal-mode lasing, attributed to well-faceted NR geometry forming a Fabry-Perot cavity, was achieved by optical pumping, paving a way for fabricating high-performance laser optoelectronics using MSE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy