SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2045 2322 OR L773:2045 2322 ;pers:(Uhlén Mathias)"

Sökning: L773:2045 2322 OR L773:2045 2322 > Uhlén Mathias

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ding, Mei, et al. (författare)
  • Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; , s. 16767-
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.
  •  
2.
  • Dusart, Philip, et al. (författare)
  • A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein. 
  •  
3.
  • Fasterius, Erik, 1987-, et al. (författare)
  • Single-cell RNA-seq variant analysis for exploration of genetic heterogeneity in cancer
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inter-and intra-tumour heterogeneity is caused by genetic and non-genetic factors, leading to severe clinical implications. High-throughput sequencing technologies provide unprecedented tools to analyse DNA and RNA in single cells and explore both genetic heterogeneity and phenotypic variation between cells in tissues and tumours. Simultaneous analysis of both DNA and RNA in the same cell is, however, still in its infancy. We have thus developed a method to extract and analyse information regarding genetic heterogeneity that affects cellular biology from single-cell RNA-seq data. The method enables both comparisons and clustering of cells based on genetic variation in single nucleotide variants, revealing cellular subpopulations corroborated by gene expression-based methods. Furthermore, the results show that lymph node metastases have lower levels of genetic heterogeneity compared to their original tumours with respect to variants affecting protein function. The analysis also revealed three previously unknown variants common across cancer cells in glioblastoma patients. These results demonstrate the power and versatility of scRNA-seq variant analysis and highlight it as a useful complement to already existing methods, enabling simultaneous investigations of both gene expression and genetic variation.
  •  
4.
  • Ghaffari Nouran, Pouyan, 1980, et al. (författare)
  • Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5, s. 8183-
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies.
  •  
5.
  • Hudson, Elton P., et al. (författare)
  • Multiplex epitope mapping using bacterial surface display reveals both linear and conformational epitopes
  • 2012
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 2, s. 706-
  • Tidskriftsartikel (refereegranskat)abstract
    • As antibody-based diagnosis and therapy grow at an increased pace, there is a need for methods which rapidly and accurately determine antibody-antigen interactions. Here, we report a method for the multiplex determination of antibody epitopes using bacterial cell-surface display. A protein-fragment library with 107 cell clones, covering 60 clinically-relevant protein targets, was created and characterized with massively parallel sequencing. Using this multi-target fragment library we determined simultaneously epitopes of commercial monoclonal and polyclonal antibodies targeting PSMA, EGFR, and VEGF. Off-target binding was observed for one of the antibodies, which demonstrates the method's ability to reveal cross-reactivity. We exemplify the detection of structural epitopes by mapping the therapeutic antibody Avastin. Based on our findings we suggest this method to be suitable for mapping linear and structural epitopes of monoclonal and polyclonal antibodies in a multiplex fashion and could find applicability in serum profiling as well as other protein-protein interaction studies.
  •  
6.
  • Lundqvist, Magnus, et al. (författare)
  • Chromophore pre-maturation for improved speed and sensitivity of split-GFP monitoring of protein secretion
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Complementation-dependent fluorescence is a powerful way to study co-localization or interactions between biomolecules. A split-GFP variant, involving the self-associating GFP 1-10 and GFP 11, has previously provided a convenient approach to measure recombinant protein titers in cell supernatants. A limitation of this approach is the slow chromophore formation after complementation. Here, we alleviate this lag in signal generation by allowing the GFP 1-10 chromophore to mature on a solid support containing GFP 11 before applying GFP 1-10 in analyses. The pre-maturated GFP 1-10 provided up to 150-fold faster signal generation compared to the non-maturated version. Moreover, pre-maturated GFP 1-10 significantly improved the ability of discriminating between Chinese hamster ovary (CHO) cell lines secreting GFP 11-tagged erythropoietin protein at varying rates. Its improved kinetics make the pre-maturated GFP 1-10 a suitable reporter molecule for cell biology research in general, especially for ranking individual cell lines based on secretion rates of recombinant proteins.
  •  
7.
  • Lyu, Chuang, et al. (författare)
  • Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury
  • 2020
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • FRMD6, a member of the group of FERM-domain proteins, is involved both in communication between cells, interactions with extracellular matrix, cellular apoptotic and regenerative mechanisms. FRMD6 was first discovered in the rodent sciatic nerve, and in the present immunohistochemical study we investigated the distribution of FRMD6 in the dorsal root ganglia (DRGs), sciatic nerve and spinal cord following sciatic nerve injury. FRMD6-immunoreactivity was found in the cytoplasm, nucleus or both, and in a majority of DRG neurons. FRMD6-immunoreactivity co-existed with several well-known neuronal markers, including calcitonin gene-related peptide, isolectin B4 and neurofilament 200 in mouse DRGs. After peripheral nerve injury, the FRMD6 mRNA levels and the overall percentage of FRMD6-positive neuron profiles (NPs) were decreased in ipsilateral lumbar DRGs, the latter mainly affecting small size neurons with cytoplasmic localization. Conversely, the proportion of NPs with nuclear FRMD6-immunoreactivity was significantly increased. In the sciatic nerve, FRMD6-immunoreactivity was observed in non-neuronal cells and in axons, and accumulated proximally to a ligation of the nerve. In the spinal cord FRMD6-immunoreactivity was detected in neurons in both dorsal and ventral horns, and was upregulated in ipsilateral dorsal horn after peripheral nerve axotomy. Our results demonstrate that FRMD6 is strictly regulated by peripheral nerve injury at the spinal level.
  •  
8.
  • Volk, Anna-Luisa, et al. (författare)
  • Stratification of responders towards eculizumab using a structural epitope mapping strategy
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The complement component 5 (C5)-binding antibody eculizumab is used to treat patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical haemolytic uremic syndrome (aHUS). As recently reported there is a need for a precise classification of eculizumab responsive patients to allow for a safe and cost-effective treatment. To allow for such stratification, knowledge of the precise binding site of the drug on its target is crucial. Using a structural epitope mapping strategy based on bacterial surface display, flow cytometric sorting and validation via haemolytic activity testing, we identified six residues essential for binding of eculizumab to C5. This epitope co-localizes with the contact area recently identified by crystallography and includes positions in C5 mutated in non-responders. The identified epitope also includes residue W917, which is unique for human C5 and explains the observed lack of cross-reactivity for eculizumab with other primates. We could demonstrate that Ornithodorus moubata complement inhibitor (OmCI), in contrast to eculizumab, maintained anti-haemolytic function for mutations in any of the six epitope residues, thus representing a possible alternative treatment for patients non-responsive to eculizumab. The method for stratification of patients described here allows for precision medicine and should be applicable to several other diseases and therapeutics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy