SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2050 7488 "

Sökning: L773:2050 7488

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abazari, R., et al. (författare)
  • High specific capacitance of a 3D-metal-organic framework-confined growth in CoMn2O4nanostars as advanced supercapacitor electrode materials
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:17, s. 11001-11012
  • Tidskriftsartikel (refereegranskat)abstract
    • In the presence of fossil fuels, several environmental concerns, such as energy shortage, environmental pollution, and global warming may occur in the present century. In this respect, supercapacitors have been introduced as green energy storage systems playing a central role in providing a sustainable human society. In this work, an advanced strategy was initially demonstrated through various synergistic effects to synthesize cobalt(ii) metal-organic framework#CoMn2O4nanocomposites (Co(ii)-TMU-63#CoMn2O4NCPs) having interfaces adapted at tunable chemical nanocomposites for hybrid supercapacitors. The given NCPs showed excellent electrochemical performance at 7 A g−1current density endowed with a specific capacity of 156 mA h g−1(1420 F g−1) and good cycling stability at 10 A g−1current density, following 7000 cycles with 93.3% capacity retention. The hybrid supercapacitor was assembled using activated carbon (AC) as negative and NCPs as positive electrodes, which delivered specific energy of 38.54 W h kg−1and maximum-specific power of 2312.4 W kg−1with 89.5% capacity retention over 7000 cycles. The enhanced electrochemical performances of Co(ii)-TMU-63#CoMn2O4NCPs can be attributed to the high surface area, porous structure, open metal sites functioning as electron collectors to enhance electron transfer as well as unique morphology and synergistic effect between Co(ii)-TMU-63 and CoMn2O4. This work may inspire a new development of interface-adapted nanocomposite for advanced energy storage applications. © The Royal Society of Chemistry 2021.
  •  
2.
  • Aguirre, Miren, et al. (författare)
  • Hybrid acrylic/CeO2 nanocomposites using hydrophilic, spherical and high aspect ratio CeO2 nanoparticles
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 2:47, s. 20280-20287
  • Tidskriftsartikel (refereegranskat)abstract
    • A dispersion of CeO2 nanoparticles and nanorods stabilized with nitrilotriacetic acid (NTA) and a 4,4'-azobis(4-cyanovaleric acid) (V-501) initiator has been used to initiate the emulsion polymerization of acrylic monomers, yielding stable hybrid CeO2 nanoparticle-nanorod/polyacrylate latexes for the first time. Films cast from these hybrid latexes are transparent due to the very homogenous distribution of the polymer compatibilized CeO2. Furthermore, it has been proven that the UV-Vis absorption capacity of the hybrid latexes is enhanced with the incorporation of the nanorods.
  •  
3.
  • Alkadir Abdulahi, Birhan, 1985, et al. (författare)
  • Structural engineering of pyrrolo[3,4-: F] benzotriazole-5,7(2 H,6 H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 7:33, s. 19522-19530
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we have synthesized two wide band gap donor polymers based on benzo[1,2-b:4,5-b′]dithiophene (BDT) and pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione (TzBI), namely, PBDT-TzBI and PBDT-F-TzBI and studied their photovoltaic properties by blending them with ITIC as an acceptor. Polymer solar cell devices made from PBDT-TzBI:ITIC and PBDT-F-TzBI:ITIC exhibited power conversion efficiencies (PCEs) of 9.22% and 11.02% and while annealing at 160 °C, improved the device performances to 10.24% and 11.98%, respectively. Upon solvent annealing with diphenyl ether (DPE) (0.5%) and chlorobenzene (CB), the PCE of the PBDT-F-TzBI-based device increased to 12.12%. The introduction of the fluorinated benzodithiophene (BDT-F) moiety on the backbone of PBDT-F-TzBI improved the open circuit voltage, short circuit current and fill factor simultaneously. The high PCEs of the PBDT-F-TzBI:ITIC-based devices were supported by comparison and analysis of the optical and electronic properties, the charge carrier mobilities, exciton dissociation probabilities, and charge recombination behaviors of the devices.
  •  
4.
  • Araujo, Rafael B., et al. (författare)
  • Designing strategies to tune reduction potential of organic molecules for sustainable high capacity batteries application
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 5:9, s. 4430-4454
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic compounds evolve as a promising alternative to the currently used inorganic materials in rechargeable batteries due to their low-cost, environmentally friendliness and flexibility. One of the strategies to reach acceptable energy densities and to deal with the high solubility of known organic compounds is to combine small redox active molecules, acting as capacity carrying centres, with conducting polymers. Following this strategy, it is important to achieve redox matching between the chosen molecule and the polymer backbone. Here, a synergetic approach combining theory and experiment has been employed to investigate this strategy. The framework of density functional theory connected with the reaction field method has been applied to predict the formal potential of 137 molecules and identify promising candidates for the referent application. The effects of including different ring types, e.g. fused rings or bonded rings, heteroatoms, [small pi] bonds, as well as carboxyl groups on the formal potential, has been rationalized. Finally, we have identified a number of molecules with acceptable theoretical capacities that show redox matching with thiophene-based conducting polymers which, hence, are suggested as pendent groups for the development of conducting redox polymer based electrode materials.
  •  
5.
  • Bamgbopa, M. O., et al. (författare)
  • Modelling of heterogeneous ion transport in conducting polymer supercapacitors
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:4, s. 2184-2194
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing electrification of many energy systems has created a large demand for low-cost and scalable electrical energy storage solutions. Conducting polymer supercapacitors have received significant attention for this purpose due to the abundance of their constituent materials. Although there exists a large body of experimental work on conducting polymer supercapacitors, a detailed understanding of the mixed electronic-ionic transport processes within these devices and the included materials, is still lacking. Modelling, in combination with experimental data, is a powerful tool to facilitate a detailed understanding of the transport processes within the materials and devices. However, to date, there has been a shortage of physical models which account for the non-ideal capacitances typically found in conducting polymer-based supercapacitors. Here, we report a novel model which reproduces experimental data and provides insights into the cyclic voltammograms, galvanostatic charge-discharge curves, self-discharge characteristics, and impedance spectroscopy results of supercapacitors based on the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and cellulose nanofibrils. We find that the non-ideal capacitive characteristics of the supercapacitors can be reproduced by the incorporation of heterogeneous ion transport features within the electrodes, comprising low ion diffusivity regions. The difference in charging rates of the high and low ion diffusivity regions accounts for the experimentally observed trends in cyclic voltammograms and self-discharge characteristics. The developed model demonstrates how complex transport processes, which govern the specifications of organic energy devices, can be analysed beyond the scope of conventional equivalent circuit models. It also provides an insight into how various transport and polarization processes are manifested in real measurement data and thus defines the limiting processes of conducting polymer energy storage devices.
  •  
6.
  • Bamgbopa, Musbaudeen, et al. (författare)
  • Understanding the characteristics of conducting polymer-redox biopolymer supercapacitors
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:41, s. 23973-23980
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of renewable energy production has sparked a huge demand for cheap and large-scale electrical storage solutions. Organic supercapacitors and batteries are envisioned as one, among several, candidates for this task due to the great abundance of their constituent materials. In particular, the class of supercapacitors based on conjugated polymer-redox biopolymer composites are of great interest, since they combine the benefit of high electrical conductivity of the conducting polymers with the low cost and high specific capacitance of redox biopolymers. The optimization of such complex systems is a grand challenge and until now there have been a lack of models available to ease that task. Here, we present a novel model that combines the charge transport and impedance properties of conducting polymers with the electrochemical characteristics of redox polymers. The model reproduces a wide range of experimental data and elucidates the coupling of several critical processes within these supercapacitors, such as the double-layer capacitance, redox kinetics and dissolution/release of the redox polymer to the electrolyte. Further, the model also predicts the dependencies of the power and energy densities on the electrode composition. The developed model shows how organic supercapacitors can be analyzed beyond archetypical equivalent circuit models and thus constitutes a promising tool for further advancements and optimization within the field of research of green energy storage technology.
  •  
7.
  • Bergqvist, J., et al. (författare)
  • Sub-glass transition annealing enhances polymer solar cell performance
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 2:17, s. 6146-6152
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal annealing of non-crystalline polymer:fullerene blends typically results in a drastic decrease in solar cell performance. In particular aggressive annealing above the glass transition temperature results in a detrimental coarsening of the blend nanostructure. We demonstrate that mild annealing below the glass transition temperature is a viable avenue to control the nanostructure of a non-crystalline thiophene–quinoxaline copolymer:fullerene blend. Direct imaging methods indicate that coarsening of the blend nanostructure can be avoided. However, a combination of absorption and luminescence spectroscopy reveals that local changes in the polymer conformation as well as limited fullerene aggregation are permitted to occur. As a result, we are able to optimise the solar cell performance evenly across different positions of the coated area, which is a necessary criterion for large-scale, high throughput production.
  •  
8.
  • Beydaghi, Hossein, et al. (författare)
  • Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 9:10, s. 6368-6381
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we designed a novel nanocomposite proton-exchange membrane (PEM) based on sulfonated poly(ether ether ketone) (SPEEK) and tantalum disulfide functionalized with terminal sulfonate groups (S-TaS2). The PEMs are prepared through a solution-casting method and exploited in direct methanol fuel cells (DMFCs). Two-dimensional S-TaS2 nanoflakes were prepared as a functional additive to produce the novel nanocomposite membrane for DMFCs due to their potential as a fuel barrier and an excellent proton conductor. To optimize the degree of sulfonation (DS) of SPEEK and the weight percentage (wt%) of S-TaS2 nanoflakes in PEMs, we used the central composite design of the response surface method. The optimum PEM was obtained for SPEEK DS of 1.9% and a weight fraction (wt%) of S-TaS2 nanoflakes of 70.2%. The optimized membrane shows a water uptake of 45.72%, a membrane swelling of 9.64%, a proton conductivity of 96.24 mS cm(-1), a methanol permeability of 2.66 x 10(-7) cm(2) s(-1), and a selectivity of 36.18 x 10(4) S s cm(-3). Moreover, SPEEK/S-TaS2 membranes show superior thermal and chemical stabilities compared to those of pristine SPEEK. The DMFC fabricated with the SPEEK/S-TaS2 membrane has reached the maximum power densities of 64.55 mW cm(-2) and 161.18 mW cm(-2) at 30 degrees C and 80 degrees C, respectively, which are similar to 78% higher than the values obtained with the pristine SPEEK membrane. Our results demonstrate that SPEEK/S-TaS2 membranes have a great potential for DMFC applications.
  •  
9.
  • Bielecki, Johan, 1982, et al. (författare)
  • Short-range structure of the brownmillerite-type oxide Ba2In2O5 and its hydrated proton-conducting form BaInO3H
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 2:40, s. 16915-16924
  • Tidskriftsartikel (refereegranskat)abstract
    • The vibrational spectra and short-range structure of the brownmillerite-type oxide Ba2In2O6 and its hydrated form BaInO3H, are investigated by means of Raman, infrared, and inelastic neutron scattering spectroscopies together with density functional theory calculations. For Ba2In2O6, which may be described as an oxygen deficient perovskite structure with alternating layers of InO6 octahedra and InO4 tetrahedra, the results affirm a short-range structure of Icmm symmetry, which is characterized by random orientation of successive layers of InO4 tetrahedra. For the hydrated, proton conducting, form, BaInO3H, the results suggest that the short-range structure is more complicated than the P4/mbm symmetry that has been proposed previously on the basis of neutron diffraction, but rather suggest a proton configuration close to the lowest energy structure predicted by Martinez et al. [J.-R. Martinez, C. E. Moen, S. Stoelen, N. L. Allan, J. Solid State Chem., 180, 3388, (2007)]. An intense Raman active vibration at 150 cm(-1) is identified as a unique fingerprint of this proton configuration.
  •  
10.
  • Bielecki, Johan, 1982, et al. (författare)
  • Structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)(x)
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 4:4, s. 1224-1232
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)(x) are investigated by means of variable temperature (20-600 degrees C) Raman spectroscopy together with thermal gravimetric analysis and inelastic neutron scattering. At room temperature, Ba2In2O5(H2O)(x) is found to be fully hydrated (x = 1) and to have a perovskite-like structure, which dehydrates gradually with increasing temperature and at around 600 degrees C the material is essentially dehydrated (x approximate to 0.2). The dehydrated material exhibits a brownmillerite structure, which is featured by alternating layers of InO6 octahedra and InO4 tetrahedra. The transition from a perovskite-like to a brownmillerite-like structure upon increasing temperature occurs through the formation of an intermediate phase at ca. 370 degrees C, corresponding to a hydration degree of approximately 50%. The structure of the intermediate phase is similar to the structure of the dehydrated material, but with the difference that it exhibits a non-centrosymmetric distortion of the InO6 octahedra that is not present in the dehydrated material. The dehydration process upon heating is a two-stage mechanism; for temperatures below the hydrated-to-intermediate phase transition, dehydration is characterized by a homogenous release of protons over the entire oxide lattice, whereas above the transition a preferential desorption of protons originating in the nominally tetrahedral layers is observed. Furthermore, our spectroscopic results point towards the co-existence of two structural phases, which relate to the two lowest-energy proton configurations in the material. The relative contributions of the two proton configurations depend on how the sample is hydrated.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (285)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (285)
övrigt vetenskapligt (5)
populärvet., debatt m.m. (1)
Författare/redaktör
Inganäs, Olle (22)
Andersson, Mats, 196 ... (13)
Sun, Licheng (13)
Wang, Ergang, 1981 (13)
Zhang, Fengling (11)
Kloo, Lars (9)
visa fler...
Chakraborty, Sudip (9)
Ahuja, Rajeev (8)
Edström, Kristina (8)
Berggren, Magnus (7)
Crispin, Xavier (7)
Müller, Christian, 1 ... (7)
Jannasch, Patric (7)
Johansson, Patrik, 1 ... (7)
Andersson, Mats R (7)
Boschloo, Gerrit (7)
Hagfeldt, Anders (7)
Sun, Licheng, 1962- (7)
Ahuja, Rajeev, 1965- (6)
Rensmo, Håkan (6)
Xu, Chao (6)
Banerjee, Amitava (6)
Younesi, Reza (6)
Karlsson, Maths, 197 ... (6)
Johansson, Erik M. J ... (6)
Hedenqvist, Mikael S ... (6)
Olsson, Richard T. (6)
Yang, Xichuan (6)
Liu, Xianjie (5)
Vomiero, Alberto (5)
Salazar-Alvarez, Ger ... (5)
Araujo, Rafael B. (5)
Fahlman, Mats (4)
Vagin, Mikhail (4)
Melianas, Armantas (4)
Bao, Qinye (4)
Inganas, Olle (4)
Tai, Cheuk-Wai (4)
Strømme, Maria, 1970 ... (4)
Hedlund, Jonas (4)
Wahnström, Göran, 19 ... (4)
Li, Xin (4)
Börjesson, Lars, 195 ... (4)
Ågren, Hans (4)
Valvo, Mario (4)
Olsson, Eva, 1960 (4)
Berglund, Lars A. (4)
Andersson, Richard L ... (4)
Kvashnina, Kristina ... (4)
Yu, Ze (4)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (72)
Uppsala universitet (72)
Chalmers tekniska högskola (61)
Linköpings universitet (58)
Stockholms universitet (24)
Lunds universitet (17)
visa fler...
RISE (17)
Luleå tekniska universitet (10)
Karlstads universitet (7)
Umeå universitet (6)
Sveriges Lantbruksuniversitet (3)
Göteborgs universitet (2)
Högskolan Dalarna (2)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (291)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (228)
Teknik (86)
Medicin och hälsovetenskap (5)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy