SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2050 7488 ;lar1:(ri)"

Sökning: L773:2050 7488 > RISE

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguirre, Miren, et al. (författare)
  • Hybrid acrylic/CeO2 nanocomposites using hydrophilic, spherical and high aspect ratio CeO2 nanoparticles
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 2:47, s. 20280-20287
  • Tidskriftsartikel (refereegranskat)abstract
    • A dispersion of CeO2 nanoparticles and nanorods stabilized with nitrilotriacetic acid (NTA) and a 4,4'-azobis(4-cyanovaleric acid) (V-501) initiator has been used to initiate the emulsion polymerization of acrylic monomers, yielding stable hybrid CeO2 nanoparticle-nanorod/polyacrylate latexes for the first time. Films cast from these hybrid latexes are transparent due to the very homogenous distribution of the polymer compatibilized CeO2. Furthermore, it has been proven that the UV-Vis absorption capacity of the hybrid latexes is enhanced with the incorporation of the nanorods.
  •  
2.
  • Chen, Shangzhi, et al. (författare)
  • Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8:36, s. 18726-18734
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms a promising alternative to conventional inorganic conductors, where deposition of thin filmsviavapour phase polymerization (VPP) has gained particular interest owing to high electrical conductivity within the plane of the film. The conductivity perpendicular to the film is typically much lower, which may be related not only to preferential alignment of PEDOT crystallites but also to vertical stratification across the film. In this study, we reveal non-linear vertical microstructural variations across VPP PEDOT:Tos thin films, as well as significant differences in doping level between the top and bottom surfaces. The results are consistent with a VPP mechanism based on diffusion-limited transport of polymerization precursors. Conducting polymer films with vertical inhomogeneity may find applications in gradient-index optics, functionally graded thermoelectrics, and optoelectronic devices requiring gradient doping. 
  •  
3.
  • Edberg, Jesper, et al. (författare)
  • Boosting the capacity of all-organic paper supercapacitors using wood derivatives
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:1, s. 145-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Printed and flexible organic electronics is a steadily expanding field of research and applications. One of the most attractive features of this technology is the possibility of large area and high throughput production to form low-cost electronics on different flexible substrates. With an increasing demand for sustainable energy production, low-cost and large volume technologies to store high-quality energy become equally important. These devices should be environmentally friendly with respect to their entire life cycle. Supercapacitors and batteries based on paper hold great promise for such applications due to the low cost and abundance of cellulose and other forest-derived components. We report a thick-film paper-supercapacitor system based on cellulose nanofibrils, the mixed ion-electron conducting polymer PEDOT: PSS and sulfonated lignin. We demonstrate that the introduction of sulfonated lignin into the cellulose-conducting polymer system increases the specific capacitance from 110 to 230 F g(-1) and the areal capacitance from 160 mF cm(-2) to 1 F cm(-2). By introducing lignosulfonate also into the electrolyte solution, equilibrium, with respect to the concentration of the redox molecule, was established between the electrode and the electrolyte, thus allowing us to perform beyond 700 charge/discharge cycles with no observed decrease in performance.
  •  
4.
  • Erlandsson, Johan, et al. (författare)
  • On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 6:40, s. 19371-19380
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.
  •  
5.
  • Gao, Jiajia, et al. (författare)
  • Light-induced electrolyte improvement in cobalt tris(bipyridine)-mediated dye-sensitized solar cells
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:33, s. 19495-19505
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-ion-free tris(2,2′-bipyridine) Co(ii/iii)-mediated electrolytes have previously been proposed for long-term stable dye-sensitized solar cells (DSSCs). Such redox systems also offer an impressive DSSC performance improvement under light soaking exposure, manifested by an increase in photocurrent and fill factor without the expense of decreasing photovoltage. Kinetic studies show that charge transfer and ion diffusion at the electrode/electrolyte interface are improved due to the light exposure. Control experiments reveal that the light effect is unambiguously associated with electrolyte components, [Co(bpy)3]3+ and the Lewis-base additive tert-butylpyridine (TBP). Electrochemical and spectroscopic investigation of the [Co(bpy)3]3+/TBP mixtures points out that the presence of TBP, which retards the electrolyte diffusion, however causes an irreversible redox reaction of [Co(bpy)3]3+ upon light exposure that improves the overall conductivity. This discovery not only provides a new strategy to mitigate the typical Jsc-Voc trade-off in Co(ii/iii)-mediated DSSCs but also highlights the importance of investigating the photochemistry of a photoelectrochemical system. 
  •  
6.
  • Isacsson, Patrik, et al. (författare)
  • Production of energy-storage paper electrodes using a pilot-scale paper machine
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:40, s. 21579-21589
  • Tidskriftsartikel (refereegranskat)abstract
    • The global efforts in electrifying our society drive the demand for low-cost and sustainable energy storage solutions. In the present work, a novel material concept was investigated to enable fabrication of several 10 meter-long rolls of supercapacitor paper electrodes on a pilot-scale paper machine. The material concept was based on cationized, cellulose-rich wood-derived fibres, conducting polymer PEDOT:PSS, and activated carbon filler particles. Cationic fibres saturated with anionic PEDOT:PSS provide a conducting scaffold hosting the activated carbon, which functions as the active charge-storage material. The response from further additives was systematically investigated for several critical paper properties. Cellulose nanofibrils were found to improve mechanical properties, while carbon black enhanced both the conductivity and the storage capacity of the activated carbon, reaching a specific capacitance of 67 F g−1. This pilot trial shows that “classical” papermaking methods are fit for the purpose and provides valuable insights on how to further advance bio-based energy storage solutions for large-scale applications.
  •  
7.
  • Jiao, Fei, et al. (författare)
  • Ionic thermoelectric paper
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 5, s. 16883-16888
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionic thermoelectric materials, for example, polyelectrolytes such as polystyrene sulfonate sodium (PSSNa),constitute a new class of materials which are attracting interest because of their large Seebeck coefficientand the possibility that they could be used in ionic thermoelectric SCs (ITESCs) and field effect transistors.However, pure polyelectrolyte membranes are not robust or flexible. In this paper, the preparation of ionicthermoelectric paper using a simple, scalable and cost-effective method is described. After a compositewas fabricated with nanofibrillated cellulose (NFC), the resulting NFC–PSSNa paper is flexible andmechanically robust, which is desirable if it is to be used in roll-to-roll processes. The robust NFC–PSSNa thermoelectric paper combines high ionic conductivity (9 mS cm1), high ionic Seebeckcoefficient (8.4 mV K1) and low thermal conductivity (0.75 W m1 K1) at 100% relative humidity,resulting in overall figure-of-merit of 0.025 at room temperature which is slightly better than that for thePSSNa alone. Fabricating a composite with cellulose enables flexibility and robustness and this is anadvance which will enable future scaling up the manufacturing of ITESCs, but also enables its use fornew applications for conformable thermoelectric devices and flexible electronics.
  •  
8.
  • Kim, Nara, et al. (författare)
  • An intrinsically stretchable symmetric organic battery based on plant-derived redox molecules
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:46, s. 25703-25714
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically stretchable energy storage devices are essential for the powering of imperceptible wearable electronics. Organic batteries based on plant-derived redox-active molecules can offer critical advantages from a safety, sustainability, and economic perspective, but such batteries are not yet available in soft and stretchable form factors. Here we report an intrinsically stretchable organic battery made of elastomeric composite electrodes formulated with alizarin, a natural dye derived from the plant Rubia tinctorum, whose two quinone motifs enable its uses in both positive and negative electrodes. The quaternary biocomposite electrodes possess excellent electron-ion conduction/coupling and superior stretchability (>300%) owing to self-organized hierarchical morphology. In a full-cell configuration, its energy density of 3.8 mW h cm−3 was preserved at 100% strain, and assembled modules on stretchy textiles and rubber gloves can power integrated LEDs during various deformations. This work paves the way for low-cost, eco-friendly, and deformable batteries for next generation wearable electronics. 
  •  
9.
  • Mianehrow, Hanieh, et al. (författare)
  • Strong reinforcement effects in 2D cellulose nanofibril–graphene oxide (CNF–GO) nanocomposites due to GO-induced CNF ordering
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 8:34, s. 17608-17620
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposites from native cellulose with low 2D nanoplatelet content are of interest as sustainable materials combining functional and structural performance. Cellulose nanofibril–graphene oxide (CNF–GO) nanocomposite films are prepared by a physical mixing–drying method, with a focus on low GO content, the use of very large GO platelets (2–45 μm) and nanostructural characterization using synchrotron X-ray source for WAXS and SAXS. These nanocomposites can be used as transparent coatings, strong films or membranes, as gas barriers or in laminated form. CNF nanofibrils with random in-plane orientation, form a continuous non-porous matrix with GO platelets oriented in-plane. GO reinforcement mechanisms in CNF are investigated, and relationships between nanostructure and suspension rheology, mechanical properties, optical transmittance and oxygen barrier properties are investigated as a function of GO content. A much higher modulus reinforcement efficiency is observed than in previous polymer–GO studies. The absolute values for modulus and ultimate strength are as high as 17 GPa and 250 MPa at a GO content as small as 0.07 vol%. The remarkable reinforcement efficiency is due to improved organization of the CNF matrix; and this GO-induced mechanism is of general interest for nanostructural tailoring of CNF-2D nanoplatelet composites.
  •  
10.
  • Mille, Christian, et al. (författare)
  • A structural and thermal conductivity study of highly porous, hierarchical polyhedral nanofoam shells made by condensing silica in microemulsion films on the surface of emulsified oil drops
  • 2013
  • Ingår i: Journal of Materials Chemistry A. - London : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 1:5, s. 1849-1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-weight solid foams are utilized in applications such as packaging and insulation mainly due to their intrinsically high porosity, low relative density and associated mechanical and transport properties. Here hollow core spherical shells are prepared with walls made of a polyhedral silica nanofoam with open cells. A microemulsion film at the oil-water interface of oil droplets is used as a soft structural template for the condensation of soluble silica species. The microemulsion sets the length scale of the monodisperse silica nanofoam cells, and the emulsion droplets set the micron-scale dimensions of the polydisperse spherical shells. Porosity is achieved by removing the templates and oils, leaving pure low-density silica. This results in a hierarchically structured, highly porous shell foam material that packs into beds with a measured porosity of approximately 97.3%, well into the range of silica aerogels. Using a combination of electron microscopy, small-angle synchrotron X-ray diffraction and nitrogen physisorption, an accurate structural model for the nanofoam shells is constructed. The material is shown to be comprised of open-cell foams that are structurally analogous to dry polyhedral soap froths having minimal surface partitions, and Plateau boundaries. The primary polyhedral nanofoam cells are 30 nm in diameter connected by 7 nm cylindrical windows. These nanofoams form spherical monolithic shells with volume average mean diameter of 41 microns and shell thickness of 0.7 microns. Simple models for the thermal conductivity of these nanofoam shell materials are constructed that include accounting for the nanoscale effects on gaseous and solid thermal conductivity. These are compared to the measured value of 0.041 W m-1 K-1. These materials represent new structures in the family of self-assembled, highly porous silica materials and are potentially useful in packaging and insulation and other applications due to their light weight and/or intrinsically low thermal conductivity and associated mechanical and transport properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy