SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2168 6149 OR L773:2168 6157 ;pers:(Lantero Rodriguez Juan)"

Search: L773:2168 6149 OR L773:2168 6157 > Lantero Rodriguez Juan

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ashton, Nicholas J., et al. (author)
  • Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology
  • 2024
  • In: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Journal article (peer-reviewed)abstract
    • ImportancePhosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. ObjectiveTo determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid beta (A beta) and longitudinal change across 3 selected cohorts. Design, Setting, and ParticipantsThis cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. ExposuresMagnetic resonance imaging, A beta positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (A beta 42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and MeasuresAccuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. ResultsThe study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated A beta (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal A beta pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in A beta-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and RelevanceThis study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
  •  
2.
  • Mattsson-Carlgren, Niklas, et al. (author)
  • Plasma Biomarker Strategy for Selecting Patients With Alzheimer Disease for Antiamyloid Immunotherapies
  • 2024
  • In: JAMA neurology. - 2168-6157 .- 2168-6149. ; 81:1, s. 69-78
  • Journal article (peer-reviewed)abstract
    • Antiamyloid immunotherapies against Alzheimer disease (AD) are emerging. Scalable, cost-effective tools will be needed to identify amyloid β (Aβ)-positive patients without an advanced stage of tau pathology who are most likely to benefit from these therapies. Blood-based biomarkers might reduce the need to use cerebrospinal fluid (CSF) or positron emission tomography (PET) for this.To evaluate plasma biomarkers for identifying Aβ positivity and stage of tau accumulation.The cohort study (BioFINDER-2) was a prospective memory-clinic and population-based study. Participants with cognitive concerns were recruited from 2017 to 2022 and divided into a training set (80% of the data) and test set (20%).Baseline values for plasma phosphorylated tau 181 (p-tau181), p-tau217, p-tau231, N-terminal tau, glial fibrillary acidic protein, and neurofilament light chain.Performance to classify participants by Aβ status (defined by Aβ-PET or CSF Aβ42/40) and tau status (tau PET). Number of hypothetically saved PET scans in a plasma biomarker-guided workflow.Of a total 912 participants, there were 499 males (54.7%) and 413 females (45.3%), and the mean (SD) age was 71.1 (8.49) years. Among the biomarkers, plasma p-tau217 was most strongly associated with Aβ positivity (test-set area under the receiver operating characteristic curve [AUC] = 0.94; 95% CI, 0.90-0.97). A 2-cut-point procedure was evaluated, where only participants with ambiguous plasma p-tau217 values (17.1% of the participants in the test set) underwent CSF or PET to assign definitive Aβ status. This procedure had an overall sensitivity of 0.94 (95% CI, 0.90-0.98) and a specificity of 0.86 (95% CI, 0.77-0.95). Next, plasma biomarkers were used to differentiate low-intermediate vs high tau-PET load among Aβ-positive participants. Plasma p-tau217 again performed best, with the test AUC = 0.92 (95% CI, 0.86-0.97), without significant improvement when adding any of the other plasma biomarkers. At a false-negative rate less than 10%, the use of plasma p-tau217 could avoid 56.9% of tau-PET scans needed to identify high tau PET among Aβ-positive participants. The results were validated in an independent cohort (n = 118).This study found that algorithms using plasma p-tau217 can accurately identify most Aβ-positive individuals, including those likely to have a high tau load who would require confirmatory tau-PET imaging. Plasma p-tau217 measurements may substantially reduce the number of invasive and costly confirmatory tests required to identify individuals who would likely benefit from antiamyloid therapies.
  •  
3.
  • Rial, Alexis Moscoso, et al. (author)
  • Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease.
  • 2021
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 78:4, s. 396-406
  • Journal article (peer-reviewed)abstract
    • Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear.To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.This longitudinal cohort study included data from the Alzheimer's Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol.Plasma p-tau181 and NfL measured with single-molecule array technology.Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale-Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020.Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r = -0.24, P < .001; CImp: r = 0.34, P < .001) and a prospective decrease in glucose metabolism (CU: r = -0.05, P = .48; CImp: r = -0.27, P < .001) and gray matter volume (CU: r = -0.19, P < .001; CImp: r = -0.31, P < .001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β-positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β-negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures.Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.
  •  
4.
  • Therriault, Joseph, et al. (author)
  • Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography.
  • 2022
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 80:2, s. 188-99
  • Journal article (peer-reviewed)abstract
    • The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles.To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET).This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded.Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay.Associations between p-tau biomarkers with amyloid PET and tau PET.A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181 difference, 13%; 95% CI, 3%-22%; P = .006; p-tau217 difference, 11%; 95% CI, 3%-20%; P = .003; p-tau231 difference, 15%; 95% CI, 5%-22%; P < .001; p-tau235 difference, 9%; 95% CI, 1%-19%; P = .02) . These results were replicated with plasma p-tau181 (difference, 11%; 95% CI, 1%-22%; P = .02), p-tau217 (difference, 9%; 95% CI, 1%-19%; P = .02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P = .009), and CSF p-tau181 (difference, 9%; 95% CI, 1%-21%; P = .02) in independent cohorts.Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework.
  •  
5.
  • Ashton, Nicholas J., et al. (author)
  • Alzheimer Disease Blood Biomarkers in Patients With Out-of-Hospital Cardiac Arrest
  • 2023
  • In: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 80:4, s. 388-396
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE Blood phosphorylated tau (p-tau) and amyloid-13 peptides (A13) are promising peripheral biomarkers of Alzheimer disease (AD) pathology. However, their potential alterations due to alternative mechanisms, such as hypoxia in patients resuscitated from cardiac arrest, are not known. OBJECTIVE To evaluate whether the levels and trajectories of blood p-tau, A1342, and A1340 following cardiac arrest, in comparison with neural injury markers neurofilament light (NfL) and total tau (t-tau), can be used for neurological prognostication following cardiac arrest.DESIGN, SETTING, AND PARTICIPANTS This prospective clinical biobank study used data from the randomized Target Temperature Management After Out-of-Hospital Cardiac Arrest (TTM) trial. Unconscious patients with cardiac arrest of presumed cardiac origin were included between November 11, 2010, and January 10, 2013, from 29 international sites. Serum analysis for serum NfL and t-tau were performed between August 1 and August 23, 2017. Serum p-tau, A1342, and A1340 were analyzed between July 1 and July 15, 2021, and between May 13 and May 25, 2022. A total of 717 participants from the TTM cohort were examined: an initial discovery subset (n = 80) and a validation subset. Both subsets were evenly distributed for good and poor neurological outcome after cardiac arrest.EXPOSURES Serum p-tau, A1342, and A1340 concentrations using single molecule array technology. Serum levels of NfL and t-tau were included as comparators.MAIN OUTCOMES AND MEASURES Blood biomarker levels at 24 hours, 48 hours, and 72 hours after cardiac arrest. Poor neurologic outcome at 6-month follow-up, defined according to the cerebral performance category scale as category 3 (severe cerebral disability), 4 (coma), or 5 (brain death).RESULTS This study included 717 participants (137 [19.1%] female and 580 male [80.9%]; mean [SD] age, 63.9 [13.5] years) who experienced out-of-hospital cardiac arrest. Significantly elevated serum p-tau levels were observed at 24 hours, 48 hours, and 72 hours in cardiac arrest patients with poor neurological outcome. The magnitude and prognostication of the change was greater at 24 hours (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI, 0.95-0.97), which was similar to NfL (AUC, 0.94; 95% CI, 0.92-0.96). However, at later time points, p-tau levels decreased and were weakly associated with neurological outcome. In contrast, NfL and t-tau maintained high diagnostic accuracies, even 72 hours after cardiac arrest. Serum A1342 and A1340 concentrations increased over time in most patients but were only weakly associated with neurological outcome.CONCLUSIONS AND RELEVANCE In this case-control study, blood biomarkers indicative of AD pathology demonstrated different dynamics of change after cardiac arrest. The increase of p-tau at 24 hours after cardiac arrest suggests a rapid secretion from the interstitial fluid following hypoxic-ischemic brain injury rather than ongoing neuronal injury like NfL or t-tau. In contrast, delayed increases of A13 peptides after cardiac arrest indicate activation of amyloidogenic processing in response to ischemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view