SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2168 6149 OR L773:2168 6157 ;pers:(Strandberg Olof)"

Sökning: L773:2168 6149 OR L773:2168 6157 > Strandberg Olof

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mattsson-Carlgren, Niklas, et al. (författare)
  • Plasma Biomarker Strategy for Selecting Patients With Alzheimer Disease for Antiamyloid Immunotherapies
  • 2024
  • Ingår i: JAMA neurology. - 2168-6157 .- 2168-6149. ; 81:1, s. 69-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Antiamyloid immunotherapies against Alzheimer disease (AD) are emerging. Scalable, cost-effective tools will be needed to identify amyloid β (Aβ)-positive patients without an advanced stage of tau pathology who are most likely to benefit from these therapies. Blood-based biomarkers might reduce the need to use cerebrospinal fluid (CSF) or positron emission tomography (PET) for this.To evaluate plasma biomarkers for identifying Aβ positivity and stage of tau accumulation.The cohort study (BioFINDER-2) was a prospective memory-clinic and population-based study. Participants with cognitive concerns were recruited from 2017 to 2022 and divided into a training set (80% of the data) and test set (20%).Baseline values for plasma phosphorylated tau 181 (p-tau181), p-tau217, p-tau231, N-terminal tau, glial fibrillary acidic protein, and neurofilament light chain.Performance to classify participants by Aβ status (defined by Aβ-PET or CSF Aβ42/40) and tau status (tau PET). Number of hypothetically saved PET scans in a plasma biomarker-guided workflow.Of a total 912 participants, there were 499 males (54.7%) and 413 females (45.3%), and the mean (SD) age was 71.1 (8.49) years. Among the biomarkers, plasma p-tau217 was most strongly associated with Aβ positivity (test-set area under the receiver operating characteristic curve [AUC]=0.94; 95% CI, 0.90-0.97). A 2-cut-point procedure was evaluated, where only participants with ambiguous plasma p-tau217 values (17.1% of the participants in the test set) underwent CSF or PET to assign definitive Aβ status. This procedure had an overall sensitivity of 0.94 (95% CI, 0.90-0.98) and a specificity of 0.86 (95% CI, 0.77-0.95). Next, plasma biomarkers were used to differentiate low-intermediate vs high tau-PET load among Aβ-positive participants. Plasma p-tau217 again performed best, with the test AUC=0.92 (95% CI, 0.86-0.97), without significant improvement when adding any of the other plasma biomarkers. At a false-negative rate less than 10%, the use of plasma p-tau217 could avoid 56.9% of tau-PET scans needed to identify high tau PET among Aβ-positive participants. The results were validated in an independent cohort (n=118).This study found that algorithms using plasma p-tau217 can accurately identify most Aβ-positive individuals, including those likely to have a high tau load who would require confirmatory tau-PET imaging. Plasma p-tau217 measurements may substantially reduce the number of invasive and costly confirmatory tests required to identify individuals who would likely benefit from antiamyloid therapies.
  •  
2.
  • Groot, Colin, et al. (författare)
  • Tau Positron Emission Tomography for Predicting Dementia in Individuals With Mild Cognitive Impairment
  • 2024
  • Ingår i: JAMA Neurology. - 2168-6149. ; 81:8, s. 845-856
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE An accurate prognosis is especially pertinent in mild cognitive impairment (MCI), when individuals experience considerable uncertainty about future progression. OBJECTIVE To evaluate the prognostic value of tau positron emission tomography (PET) to predict clinical progression from MCI to dementia. DESIGN, SETTING, AND PARTICIPANTS This was a multicenter cohort study with external validation and a mean (SD) follow-up of 2.0 (1.1) years. Data were collected from centers in South Korea, Sweden, the US, and Switzerland from June 2014 to January 2024. Participant data were retrospectively collected and inclusion criteria were a baseline clinical diagnosis of MCI; longitudinal clinical follow-up; a Mini-Mental State Examination (MMSE) score greater than 22; and available tau PET, amyloid-β (Aβ) PET, and magnetic resonance imaging (MRI) scan less than 1 year from diagnosis. A total of 448 eligible individuals with MCI were included (331 in the discovery cohort and 117 in the validation cohort). None of these participants were excluded over the course of the study. EXPOSURES Tau PET, Aβ PET, and MRI. MAIN OUTCOMES AND MEASURES Positive results on tau PET (temporal meta–region of interest), Aβ PET (global; expressed in the standardized metric Centiloids), and MRI (Alzheimer disease [AD] signature region) was assessed using quantitative thresholds and visual reads. Clinical progression from MCI to all-cause dementia (regardless of suspected etiology) or to AD dementia (AD as suspected etiology) served as the primary outcomes. The primary analyses were receiver operating characteristics. RESULTS In the discovery cohort, the mean (SD) age was 70.9 (8.5) years, 191 (58%) were male, the mean (SD) MMSE score was 27.1 (1.9), and 110 individuals with MCI (33%) converted to dementia (71 to AD dementia). Only the model with tau PET predicted all-cause dementia (area under the receiver operating characteristic curve [AUC], 0.75; 95% CI, 0.70-0.80) better than a base model including age, sex, education, and MMSE score (AUC, 0.71; 95% CI, 0.65-0.77; P = .02), while the models assessing the other neuroimaging markers did not improve prediction. In the validation cohort, tau PET replicated in predicting all-cause dementia. Compared to the base model (AUC, 0.75; 95% CI, 0.69-0.82), prediction of AD dementia in the discovery cohort was significantly improved by including tau PET (AUC, 0.84; 95% CI, 0.79-0.89; P < .001), tau PET visual read (AUC, 0.83; 95% CI, 0.78-0.88; P = .001), and Aβ PET Centiloids (AUC, 0.83; 95% CI, 0.78-0.88; P = .03). In the validation cohort, only the tau PET and the tau PET visual reads replicated in predicting AD dementia. CONCLUSIONS AND RELEVANCE In this study, tau-PET showed the best performance as a stand-alone marker to predict progression to dementia among individuals with MCI. This suggests that, for prognostic purposes in MCI, a tau PET scan may be the best currently available neuroimaging marker.
  •  
3.
  • Janelidze, Shorena, et al. (författare)
  • Associations of Plasma Phospho-Tau217 Levels with Tau Positron Emission Tomography in Early Alzheimer Disease
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:2, s. 149-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: There is an urgent need for inexpensive and minimally invasive blood biomarkers for Alzheimer disease (AD) that could be used to detect early disease changes. Objective: To assess how early in the course of AD plasma levels of tau phosphorylated at threonine 217 (P-tau217) start to change compared with levels of established cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers of AD pathology. Design, Setting, and Participants: This cohort study included cognitively healthy control individuals (n = 225) and participants with subjective cognitive decline (n = 89) or mild cognitive impairment (n = 176) from the BioFINDER-2 study. Participants were enrolled at 2 different hospitals in Sweden from January 2017 to October 2019. All study participants underwent plasma P-tau217 assessments and tau- and amyloid-β (Aβ)-PET imaging. A subcohort of 111 participants had 2 or 3 tau-PET scans. Main Outcomes and Measures: Changes in plasma P-tau217 levels in preclinical and prodromal AD compared with changes in CSF P-tau217 and PET measures. Results: Of 490 participants, 251 were women (51.2%) and the mean (SD) age was 65.9 (13.1) years. Plasma P-tau217 levels were increased in cognitively unimpaired participants with abnormal Aβ-PET but normal tau-PET in the entorhinal cortex (Aβ-PET+/ tau-PET- group vs Aβ-PET-/ tau-PET- group: median, 2.2 pg/mL [interquartile range (IQR), 1.5-2.9 pg/mL] vs 0.7 pg/mL [IQR, 0.3-1.4 pg/mL]). Most cognitively unimpaired participants who were discordant for plasma P-tau217 and tau-PET were positive for plasma P-tau217 and negative for tau-PET (P-tau217+/tau-PET-: 36 [94.7%]; P-tau217-/tau-PET+: 2 [5.3%]). Event-based modeling of cross-sectional data predicted that in cognitively unimpaired participants and in those with mild cognitive impairment, both plasma and CSF P-tau217 would change before the tau-PET signal in the entorhinal cortex, followed by more widespread cortical tau-PET changes. When testing the association with global Aβ load in nonlinear spline models, both plasma and CSF P-tau217 were increased at lower Aβ-PET values compared with tau-PET measures. Among participants with normal baseline tau-PET, the rates of longitudinal increase in tau-PET in the entorhinal cortex were higher in those with abnormal plasma P-tau217 at baseline (median standardized uptake value ratio, 0.029 [IQR, -0.006 to 0.041] vs -0.001 [IQR, -0.021 to 0.020]; Mann-Whitney U, P =.02). Conclusions and Relevance: In this cohort study, plasma P-tau217 levels were increased during the early preclinical stages of AD when insoluble tau aggregates were not yet detectable by tau-PET. Plasma P-tau217 may hold promise as a biomarker for early AD brain pathology.
  •  
4.
  • Leuzy, Antoine, et al. (författare)
  • Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease
  • 2022
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 79:2, s. 149-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: There is currently no consensus as to which biomarkers best predict longitudinal tau accumulation at different clinical stages of Alzheimer disease (AD). Objective: To describe longitudinal [18F]RO948 tau positron emission tomography (PET) findings across the clinical continuum of AD and determine which biomarker combinations showed the strongest associations with longitudinal tau PET and best optimized clinical trial enrichment. Design, Setting, and Participants: This longitudinal cohort study consecutively enrolled amyloid-β (Aβ)-negative cognitively unimpaired (CU) participants, Aβ-positive CU individuals, Aβ-positive individuals with mild cognitive impairment (MCI), and individuals with AD dementia between September 2017 and November 2020 from the Swedish BioFINDER-2 (discovery cohort) and BioFINDER-1 (validation cohort) studies. Exposures: Baseline plasma and cerebrospinal fluid Aβ42/Aβ40, tau phosphorylated at threonine-217 (p-tau217), p-tau181 and neurofilament light, magnetic resonance imaging, amyloid PET ([18F]flutemetamol), and tau PET ([18F]RO948 in the BioFINDER-2 study; [18F]flortaucipir in the BioFINDER-1 study). Main Outcomes and Measures: Baseline tau PET standardized uptake value ratio (SUVR) and annual percent change in tau PET SUVR across regions of interest derived using a data-driven approach combining clustering and event-based modeling. Regression models were used to examine associations between individual biomarkers and longitudinal tau PET and to identify which combinations best predicted longitudinal tau PET. These combinations were then entered in a power analysis to examine how their use as an enrichment strategy would affect sample size in a simulated clinical trial. Results: Of 343 participants, the mean (SD) age was 72.56 (7.24) years, and 157 (51.1%) were female. The clustering/event-based modeling-based approach identified 5 regions of interest (stages). In Aβ-positive CU individuals, the largest annual increase in tau PET SUVR was seen in stage I (entorhinal cortex, hippocampus, and amygdala; 4.04% [95% CI, 2.67%-5.32%]). In Aβ-positive individuals with MCI and with AD dementia, the greatest increases were seen in stages II (temporal cortical regions; 4.45% [95% CI, 3.41%-5.49%]) and IV (certain frontal regions; 5.22% [95% CI, 3.95%-6.49%]), respectively. In Aβ-negative CU individuals and those with MCI, modest change was seen in stage I (1.38% [95% CI, 0.78%-1.99%] and 1.80% [95% CI, 0.76%-2.84%], respectively). When looking at individual predictors and longitudinal tau PET in the stages that showed most change, plasma p-tau217 (R2= 0.27, P <.005), tau PET (stage I baseline SUVR; R2= 0.13, P <.05) and amyloid PET (R2= 0.10, P <.05) were significantly associated with longitudinal tau PET in stage I in Aβ-positive CU individuals. In Aβ-positive individuals with MCI, plasma p-tau217 (R2= 0.24, P <.005) and tau PET (stage II baseline SUVR; R2= 0.44, P <.001) were significantly associated with longitudinal tau PET in stage II. Findings were replicated in BioFINDER-1 using longitudinal [18F]flortaucipir. For the power analysis component, plasma p-tau217 with tau PET resulted in sample size reductions of 43% (95% CI, 34%-46%; P <.005) in Aβ-positive CU individuals and of 68% (95% CI, 61%-73%; P <.001) in Aβ-positive individuals with MCI. Conclusions and Relevance: In trials using tau PET as the outcome, plasma p-tau217 with tau PET may prove optimal for enrichment in preclinical and prodromal AD. However, plasma p-tau217 was most important in preclinical AD, while tau PET was more important in prodromal AD..
  •  
5.
  • Leuzy, Antoine, et al. (författare)
  • Comparison of Group-Level and Individualized Brain Regions for Measuring Change in Longitudinal Tau Positron Emission Tomography in Alzheimer Disease
  • 2023
  • Ingår i: JAMA Neurology. - 2168-6149. ; 80:6, s. 614-623
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Longitudinal tau positron emission tomography (PET) is a relevant outcome in clinical trials evaluating disease-modifying therapies in Alzheimer disease (AD). A key unanswered question is whether the use of participant-specific (individualized) regions of interest (ROIs) is superior to conventional approaches where the same ROI (group-level) is used for each participant. Objective: To compare group- and participant-level ROIs in participants at different stages of the AD clinical continuum in terms of annual percentage change in tau-PET standardized uptake value ratio (SUVR) and sample size requirements. Design, Setting, and Participants: This was a longitudinal cohort study with consecutive participant enrollment between September 18, 2017, and November 15, 2021. Included in the analysis were participants with mild cognitive impairment and AD dementia from the prospective and longitudinal Swedish Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 2 (BioFINDER-2) study; in addition, a validation sample (the AVID 05e, Expedition-3, Alzheimer's Disease Neuroimaging Initiative [ADNI], and BioFINDER-1 study cohorts) was also included. Exposures: Tau PET (BioFINDER-2, [18F]RO948; validation sample, [18F]flortaucipir), 7 group-level (5 data-driven stages, meta-temporal, whole brain), and 5 individualized ROIs. Main Outcomes and Measures: Annual percentage change in tau-PET SUVR across ROIs. Sample size requirements in simulated clinical trials using tau PET as an outcome were also calculated. Results: A total of 215 participants (mean [SD] age, 71.4 (7.5) years; 111 male [51.6%]) from the BioFINDER-2 study were included in this analysis: 97 amyloid-β (Aβ)-positive cognitively unimpaired (CU) individuals, 77 with Aβ-positive mild cognitive impairment (MCI), and 41 with AD dementia. In the validation sample were 137 Aβ-positive CU participants, 144 with Aβ-positive MCI, and 125 with AD dementia. Mean (SD) follow-up time was 1.8 (0.3) years. Using group-level ROIs, the largest annual percentage increase in tau-PET SUVR in Aβ-positive CU individuals was seen in a composite ROI combining the entorhinal cortex, hippocampus, and amygdala (4.29%; 95% CI, 3.42%-5.16%). In individuals with Aβ-positive MCI, the greatest change was seen in the temporal cortical regions (5.82%; 95% CI, 4.67%-6.97%), whereas in those with AD dementia, the greatest change was seen in the parietal regions (5.22%; 95% CI, 3.95%-6.49%). Significantly higher estimates of annual percentage change were found using several of the participant-specific ROIs. Importantly, the simplest participant-specific approach, where change in tau PET was calculated in an ROI that best matched the participant's data-driven disease stage, performed best in all 3 subgroups. For the power analysis, sample size reductions for the participant-specific ROIs ranged from 15.94% (95% CI, 8.14%-23.74%) to 72.10% (95% CI, 67.10%-77.20%) compared with the best-performing group-level ROIs. Findings were replicated using [18F]flortaucipir. Conclusions and Relevance: Finding suggest that certain individualized ROIs carry an advantage over group-level ROIs for assessing longitudinal tau changes and increase the power to detect treatment effects in AD clinical trials using longitudinal tau PET as an outcome.
  •  
6.
  • Leuzy, Antoine, et al. (författare)
  • Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease from Other Neurodegenerative Disorders
  • 2020
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 77:8, s. 955-965
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: The diagnostic performance of second-generation tau positron emission tomographic (PET) tracers is not yet known. Objective: To examine the novel tau PET tracer RO948 F 18 ([18F]RO948) performance in discriminating Alzheimer disease (AD) from non-AD neurodegenerative disorders. Design, Setting, and Participants: In this diagnostic study, 613 participants in the Swedish BioFINDER-2 study were consecutively enrolled in a prospective cross-sectional study from September 4, 2017, to August 28, 2019. Participants included 257 cognitively unimpaired controls, 154 patients with mild cognitive impairment, 100 patients with AD dementia, and 102 with non-AD neurodegenerative disorders. Evaluation included a comparison of tau PET tracer [18F]RO948 with magnetic resonance imaging (MRI) and cerebrospinal fluid and a head-to-head comparison between [18F]RO948 and flortaucipir F 18 ([18F]flortaucipir) in patients with semantic variant primary progressive aphasia (svPPA). Exposures: [18F]RO948 (all patients) and [18F]flortaucipir (3 patients with svPPA) tau PET; MRI (hippocampal volume, composite temporal lobe cortical thickness, whole-brain cortical thickness) and cerebrospinal fluid measures (p-tau181 and amyloid Aβ42 and Aβ40 ratio[Aβ42/Aβ40], and Aβ42/p-tau181 ratio). Main Outcomes and Measures: Standard uptake value ratios (SUVRs) in 4 predefined regions of interest (ROIs) reflecting Braak staging scheme for tau pathology and encompass I-II (entorhinal cortex), III-IV (inferior/middle temporal, fusiform gyrus, parahippocampal cortex, and amygdala), I-IV, and V-VI (widespread neocortical areas), area under the receiver operating characteristic curve (AUC) values, and subtraction images between [18F]RO948 and [18F]flortaucipir. Results: Diagnostic groups among the 613 participants included cognitively unimpaired (mean [SD] age, 65.8 [12.1] years; 117 men [46%]), mild cognitive impairment (age, 70.8 [8.3] years; 82 men [53%]), AD dementia (age, 73.5 [6.7] years; 57 men [57%]), and non-AD disorders (age, 70.5 [8.6] years; 41 men [40%]). Retention of [18F]RO948 was higher in AD dementia compared with all other diagnostic groups. [18F]RO948 could distinguish patients with AD dementia from individuals without cognitive impairment and those with non-AD disorders, and the highest AUC was obtained using the I-IV ROI (AUC = 0.98; 95% CI, 0.96-0.99 for AD vs no cognitive impairment and AUC = 0.97; 95% CI, 0.95-0.99 for AD vs non-AD disorders), which outperformed MRI (highest AUC = 0.91 for AD vs no cognitive impairment using whole-brain thickness, and AUC = 0.80 for AD vs non-AD disorders using temporal lobe thickness) and cerebrospinal fluid measures (highest AUC = 0.94 for AD vs no cognitive impairment using Aβ42/p-tau181, and AUC = 0.93 for AD vs non-AD disorders using Aβ42/Aβ40). Generally, tau PET positivity using [18F]RO948 was observed only in Aβ-positive cases or in MAPT R406W mutation carriers. Retention of [18F]RO948 was not pronounced in patients with svPPA, and head-to-head comparison revealed lower temporal lobe uptake than with [18F]flortaucipir. Conclusions and Relevance: In this study, elevated [18F]RO948 SUVRs were most often seen among Aβ-positive cases, which suggests that [18F]RO948 has high specificity for AD-type tau and highlights its potential as a diagnostic marker in the differential diagnosis of AD.
  •  
7.
  • Ossenkoppele, Rik, et al. (författare)
  • Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease : A Head-to-Head Comparison against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 961-971
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Tau positron emission tomography (PET) tracers have proven useful for the differential diagnosis of dementia, but their utility for predicting cognitive change is unclear. Objective: To examine the prognostic accuracy of baseline fluorine 18 (18F)-flortaucipir and [18F]RO948 (tau) PET in individuals across the Alzheimer disease (AD) clinical spectrum and to perform a head-to-head comparison against established magnetic resonance imaging (MRI) and amyloid PET markers. Design, Setting, and Participants: This prognostic study collected data from 8 cohorts in South Korea, Sweden, and the US from June 1, 2014, to February 28, 2021, with a mean (SD) follow-up of 1.9 (0.8) years. A total of 1431 participants were recruited from memory clinics, clinical trials, or cohort studies; 673 were cognitively unimpaired (CU group; 253 [37.6%] positive for amyloid-β [Aβ]), 443 had mild cognitive impairment (MCI group; 271 [61.2%] positive for Aβ), and 315 had a clinical diagnosis of AD dementia (315 [100%] positive for Aβ). Exposures: [18F]Flortaucipir PET in the discovery cohort (n = 1135) or [18F]RO948 PET in the replication cohort (n = 296), T1-weighted MRI (n = 1431), and amyloid PET (n = 1329) at baseline and repeated Mini-Mental State Examination (MMSE) evaluation. Main Outcomes and Measures: Baseline [18F]flortaucipir/[18F]RO948 PET retention within a temporal region of interest, MRI-based AD-signature cortical thickness, and amyloid PET Centiloids were used to predict changes in MMSE using linear mixed-effects models adjusted for age, sex, education, and cohort. Mediation/interaction analyses tested whether associations between baseline tau PET and cognitive change were mediated by baseline MRI measures and whether age, sex, and APOE genotype modified these associations. Results: Among 1431 participants, the mean (SD) age was 71.2 (8.8) years; 751 (52.5%) were male. Findings for [18F]flortaucipir PET predicted longitudinal changes in MMSE, and effect sizes were stronger than for AD-signature cortical thickness and amyloid PET across all participants (R2, 0.35 [tau PET] vs 0.24 [MRI] vs 0.17 [amyloid PET]; P <.001, bootstrapped for difference) in the Aβ-positive MCI group (R2, 0.25 [tau PET] vs 0.15 [MRI] vs 0.07 [amyloid PET]; P <.001, bootstrapped for difference) and in the Aβ-positive CU group (R2, 0.16 [tau PET] vs 0.08 [MRI] vs 0.08 [amyloid PET]; P <.001, bootstrapped for difference). These findings were replicated in the [18F]RO948 PET cohort. MRI mediated the association between [18F]flortaucipir PET and MMSE in the groups with AD dementia (33.4% [95% CI, 15.5%-60.0%] of the total effect) and Aβ-positive MCI (13.6% [95% CI, 0.0%-28.0%] of the total effect), but not the Aβ-positive CU group (3.7% [95% CI, -17.5% to 39.0%]; P =.71). Age (t = -2.28; P =.02), but not sex (t = 0.92; P =.36) or APOE genotype (t = 1.06; P =.29) modified the association between baseline [18F]flortaucipir PET and cognitive change, such that older individuals showed faster cognitive decline at similar tau PET levels. Conclusions and Relevance: The findings of this prognostic study suggest that tau PET is a promising tool for predicting cognitive change that is superior to amyloid PET and MRI and may support the prognostic process in preclinical and prodromal stages of AD.
  •  
8.
  • Ossenkoppele, Rik, et al. (författare)
  • Assessment of Demographic, Genetic, and Imaging Variables Associated with Brain Resilience and Cognitive Resilience to Pathological Tau in Patients with Alzheimer Disease
  • 2020
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 77:5, s. 632-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Better understanding is needed of the degree to which individuals tolerate Alzheimer disease (AD)-like pathological tau with respect to brain structure (brain resilience) and cognition (cognitive resilience). Objective: To examine the demographic (age, sex, and educational level), genetic (APOE-ϵ4 status), and neuroimaging (white matter hyperintensities and cortical thickness) factors associated with interindividual differences in brain and cognitive resilience to tau positron emission tomography (PET) load and to changes in global cognition over time. Design, Setting, an Participants: In this cross-sectional, longitudinal study, tau PET was performed from June 1, 2014, to November 30, 2017, and global cognition monitored for a mean [SD] interval of 2.0 [1.8] years at 3 dementia centers in South Korea, Sweden, and the United States. The study included amyloid-β-positive participants with mild cognitive impairment or AD dementia. Data analysis was performed from October 26, 2018, to December 11, 2019. Exposures: Standard dementia screening, cognitive testing, brain magnetic resonance imaging, amyloid-β PET and cerebrospinal fluid analysis, and flortaucipir (tau) labeled with fluor-18 (18F) PET. Main Outcomes and Measures: Separate linear regression models were performed between whole cortex [18F]flortaucipir uptake and cortical thickness, and standardized residuals were used to obtain a measure of brain resilience. The same procedure was performed for whole cortex [18F]flortaucipir uptake vs Mini-Mental State Examination (MMSE) as a measure of cognitive resilience. Bivariate and multivariable linear regression models were conducted with age, sex, educational level, APOE-ϵ4 status, white matter hyperintensity volumes, and cortical thickness as independent variables and brain and cognitive resilience measures as dependent variables. Linear mixed models were performed to examine whether changes in MMSE scores over time differed as a function of a combined brain and cognitive resilience variable. Results: A total of 260 participants (145 [55.8%] female; mean [SD] age, 69.2 [9.5] years; mean [SD] MMSE score, 21.9 [5.5]) were included in the study. In multivariable models, women (standardized β =-0.15, P =.02) and young patients (standardized β =-0.20, P =.006) had greater brain resilience to pathological tau. Higher educational level (standardized β = 0.23, P <.001) and global cortical thickness (standardized β = 0.23, P <.001) were associated with greater cognitive resilience to pathological tau. Linear mixed models indicated a significant interaction of brain resilience × cognitive resilience × time on MMSE (β [SE] =-0.235 [0.111], P =.03), with steepest slopes for individuals with both low brain and cognitive resilience. Conclusions and Relevance: Results of this study suggest that women and young patients with AD have relative preservation of brain structure when exposed to neocortical pathological tau. Interindividual differences in resilience to pathological tau may be important to disease progression because participants with both low brain and cognitive resilience had the most rapid cognitive decline over time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy