SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2191 219X ;pers:(Minarik David)"

Sökning: L773:2191 219X > Minarik David

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anand, Aseem, et al. (författare)
  • Automated Bone Scan Index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide
  • 2016
  • Ingår i: EJNMMI Research. - : Springer. - 2191-219X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Having performed analytical validation studies, we are now assessing the clinical utility of the upgraded automated Bone Scan Index (BSI) in metastatic castration-resistant prostate cancer (mCRPC). In the present study, we retrospectively evaluated the discriminatory strength of the automated BSI in predicting overall survival (OS) in mCRPC patients being treated with enzalutamide.METHODS: Retrospectively, we included patients who received enzalutamide as a clinically approved therapy for mCRPC and had undergone bone scan prior to starting therapy. Automated BSI, prostate-specific antigen (PSA), hemoglobin (HgB), and alkaline phosphatase (ALP) were obtained at baseline. Change in automated BSI and PSA were obtained from patients who have had bone scan at week 12 of treatment follow-up. Automated BSI was obtained using the analytically validated EXINI Bone(BSI) version 2. Kendall's tau (τ) was used to assess the correlation of BSI with other blood-based biomarkers. Concordance index (C-index) was used to evaluate the discriminating strength of automated BSI in predicting OS.RESULTS: Eighty mCRPC patients with baseline bone scans were included in the study. There was a weak correlation of automated BSI with PSA (τ = 0.30), with HgB (τ = -0.17), and with ALP (τ = 0.56). At baseline, the automated BSI was observed to be predictive of OS (C-index 0.72, standard error (SE) 0.03). Adding automated BSI to the blood-based model significantly improved the C-index from 0.67 to 0.72, p = 0.017. Treatment follow-up bone scans were available from 62 patients. Both change in BSI and percent change in PSA were predictive of OS. However, the combined predictive model of percent PSA change and change in automated BSI (C-index 0.77) was significantly higher than that of percent PSA change alone (C-index 0.73), p = 0.041.CONCLUSIONS: The upgraded and analytically validated automated BSI was found to be a strong predictor of OS in mCRPC patients. Additionally, the change in automated BSI demonstrated an additive clinical value to the change in PSA in mCRPC patients being treated with enzalutamide.
  •  
2.
  • Ly, John, et al. (författare)
  • Post-reconstruction enhancement of [18F]FDG PET images with a convolutional neural network
  • 2021
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of the study was to develop and test an artificial intelligence (AI)-based method to improve the quality of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) images. Methods: A convolutional neural network (CNN) was trained by using pairs of excellent (acquisition time of 6 min/bed position) and standard (acquisition time of 1.5 min/bed position) or sub-standard (acquisition time of 1 min/bed position) images from 72 patients. A test group of 25 patients was used to validate the CNN qualitatively and quantitatively with 5 different image sets per patient: 4 min/bed position, 1.5 min/bed position with and without CNN, and 1 min/bed position with and without CNN. Results: Difference in hotspot maximum or peak standardized uptake value between the standard 1.5 min and 1.5 min CNN images fell short of significance. Coefficient of variation, the noise level, was lower in the CNN-enhanced images compared with standard 1 min and 1.5 min images. Physicians ranked the 1.5 min CNN and the 4 min images highest regarding image quality (noise and contrast) and the standard 1 min images lowest. Conclusions: AI can enhance [18F]FDG-PET images to reduce noise and increase contrast compared with standard images whilst keeping SUVmax/peak stability. There were significant differences in scoring between the 1.5 min and 1.5 min CNN image sets in all comparisons, the latter had higher scores in noise and contrast. Furthermore, difference in SUVmax and SUVpeak fell short of significance for that pair. The improved image quality can potentially be used either to provide better images to the nuclear medicine physicians or to reduce acquisition time/administered activity.
  •  
3.
  • Ly, John, et al. (författare)
  • The use of a proposed updated EARL harmonization of 18F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations
  • 2019
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Deauville score (DS) is a clinical tool, based on the comparison between lesion and reference organ uptake of 18F-fluorodeoxyglucose (FDG), used to stratify patients with lymphoma into categories reflecting their disease status. With a plethora of positron emission tomography with computed tomography (PET-CT) hard- and software algorithms, standard uptake value (SUV) in lesions and reference organs may differ which affects DS classification and therefore medical treatment. The EANM Research Ltd. (EARL) harmonization program from the European Association of Nuclear Medicine (EANM) partly mitigates this issue, but local preferences are common in clinical practice. We have investigated the discordance in DS calculated from patients with lymphoma referred for 18F-FDG PET-CT reconstructed with three different algorithms: the newly introduced block-sequential regularization expectation-maximization algorithm commercially sold as Q. Clear (QC, GE Healthcare, Milwaukee, WI, USA), compliant with the newly proposed updated EARL recommendations, and two settings compliant with the current EARL recommendations (EARLlower and EARLupper, representing the lower and upper limit of the EARL recommendations). Methods: Fifty-two patients with non-Hodgkin and Hodgkin lymphoma were included (18 females and 34 males). Segmentation of mediastinal blood pool and liver were semi-automatically performed, whereas segmentation of lesions was done manually. From these segmentations, SUVmax and SUVpeak were obtained and DS calculated. Results: There was a significant difference in DS between the QC algorithm and EARLlower/EARLupper (p < 0.0001 for both) but not between EARLlower and EARLupper (p = 0.102) when SUVmax was used. For SUVpeak, there was a significant difference between QC and EARLlower (p = 0.001), but not for QC vs EARLupper (p = 0.071) or EARLlower vs EARLupper (p = 0.102). Five non-responders (DS 4–5) for QC were classified as responders (DS 1–3) when EARLlower/EARLupper was used, both when SUVmax and SUVpeak were investigated. Conclusion: Using the proposed updated EARL recommendations compared with the current recommendations will significantly change DS classification. In select cases, the discordance would affect the choice of medical treatment. Specifically, the current EARL recommendations were more often prone to classify patients as responders.
  •  
4.
  • Minarik, David, et al. (författare)
  • Perfusion vector-a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients.
  • 2015
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method for further assisting the visual interpretation and to test the concept using simulated MPS images as well as patients.
  •  
5.
  • Trägårdh, Elin, et al. (författare)
  • Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG
  • 2019
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Block-sequential regularized expectation maximization (BSREM), commercially Q. Clear (GE Healthcare, Milwaukee, WI, USA), is a reconstruction algorithm that allows for a fully convergent iterative reconstruction leading to higher image contrast compared to conventional reconstruction algorithms, while also limiting noise. The noise penalization factor β controls the trade-off between noise level and resolution and can be adjusted by the user. The aim was to evaluate the influence of different β values for different activity time products (ATs = administered activity × acquisition time) in whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) regarding quantitative data, interpretation, and quality assessment of the images. Twenty-five patients with known or suspected malignancies, referred for clinical 18F-FDG PET-CT examinations acquired on a silicon photomultiplier PET-CT scanner, were included. The data were reconstructed using BSREM with β values of 100–700 and ATs of 4–16 MBq/kg × min/bed (acquisition times of 1, 1.5, 2, 3, and 4 min/bed). Noise level, lesion SUVmax, and lesion SUVpeak were calculated. Image quality and lesion detectability were assessed by four nuclear medicine physicians for acquisition times of 1.0 and 1.5 min/bed position. Results: The noise level decreased with increasing β values and ATs. Lesion SUVmax varied considerably between different β values and ATs, whereas SUVpeak was more stable. For an AT of 6 (in our case 1.5 min/bed), the best image quality was obtained with a β of 600 and the best lesion detectability with a β of 500. AT of 4 generated poor-quality images and false positive uptakes due to noise. Conclusions: For oncologic whole-body 18F-FDG examinations on a SiPM-based PET-CT, we propose using an AT of 6 (i.e., 4 MBq/kg and 1.5 min/bed) reconstructed with BSREM using a β value of 500–600 in order to ensure image quality and lesion detection rate as well as a high patient throughput. We do not recommend using AT < 6 since the risk of false positive uptakes due to noise increases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy