SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2331 7019 ;pers:(Bauch Thilo 1972)"

Sökning: L773:2331 7019 > Bauch Thilo 1972

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aurino, Pier Paolo, 1985, et al. (författare)
  • Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer
  • 2016
  • Ingår i: Physical Review Applied. - : American Physical Society. - 2331-7019. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO) offers a unique playground to study the interplay and competitions between different ordering phenomena in a strongly correlated two- dimensional electron gas. Recent studies of the LAO/STO interface reveal the inhomogeneous nature of the 2DEG that strongly influences electrical-transport properties. Nanowires needed in future applications may be adversely affected, and our aim is, thus, to produce a more homogeneous electron gas. In this work, we demonstrate that nanostructures fabricated in the quasi-2DEG at the LaAlO3/SrTiO3 interface, capped with a SrCuO2 layer, retain their electrical resistivity and mobility independent of the structure size, ranging from 100 nm to 30 mu m. This is in contrast to noncapped LAO/STO structures, where the room-temperature electrical resistivity significantly increases when the structure size becomes smaller than 1 mu m. High-resolution intermodulation electrostatic force microscopy reveals an inhomogeneous surface potential with "puddles" of a characteristic size of 130 nm in the noncapped samples and a more uniform surface potential with a larger characteristic size of the puddles in the capped samples. In addition, capped structures show superconductivity below 200 mK and nonlinear currentvoltage characteristics with a clear critical current observed up to 700 mK. Our findings shed light on the complicated nature of the 2DEG at the LAO/STO interface and may also be used for the design of electronic devices.
  •  
2.
  • Baghdadi, Reza, 1984, et al. (författare)
  • Fabricating Nanogaps in YBa2Cu3O7-delta for Hybrid Proximity-Based Josephson Junctions
  • 2015
  • Ingår i: Physical Review Applied. - 2331-7019. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The advances of nanotechnologies applied to high-critical-temperature superconductors (HTSs) have recently given a huge boost to the field, opening new prospectives for their integration in hybrid devices. The feasibility of this research goes through the realization of HTS nanogaps with superconductive properties close to the as-grown bulk material at the nanoscale. Here we present a fabrication approach allowing the realization of YBa2Cu3O7-delta (YBCO) nanogaps with dimensions as small as 35 nm. To assess the quality of the nanogaps, we measure, before and after an ozone treatment, the current-voltage characteristics and the resistance versus temperature of YBCO nanowires with various widths and lengths, fabricated by using different lithographic processes. The analysis of the superconducting transition with a thermally activated vortex-entry model allows us to determine the maximum damage the nanowires undergo during the patterning which relates to the upper bound for the dimension of the nanogap. We find that the effective width of the nanogap is of the order of 100 nm at the superconducting transition temperature while retaining the geometrical value of about 35 nm at lower temperatures. The feasibility of the nanogaps for hybrid Josephson devices is demonstrated by bridging them with thin Au films. We detect a Josephson coupling up to 85 K with an almost ideal magnetic-field response of the Josephson current. These results pave the way for the realization of complex hybrid devices, where tiny HTS nanogaps can be instrumental to study the Josephson effect through barriers such as topological insulators or graphene.
  •  
3.
  • Gutierrez Latorre, Martí, 1993, et al. (författare)
  • Superconducting Microsphere Magnetically Levitated in an Anharmonic Potential with Integrated Magnetic Readout
  • 2023
  • Ingår i: Physical Review Applied. - 2331-7019. ; 19:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetically levitated superconducting microparticles offer a promising path to quantum experiments with picogram to microgram objects. In this work, we levitate a 700 ng∼1017amu superconducting microsphere in a magnetic chip trap in which detection is integrated. We measure the center-of-mass motion of the particle using a dc superconducting quantum interference device magnetometer. The trap frequencies are continuously tunable between 30 and 160 Hz and the particle remains stably trapped over days in a dilution-refrigerator environment. We characterize the motional-amplitude-dependent frequency shifts, which arise from trap anharmonicities, namely, Duffing nonlinearities and mode couplings. We explain this nonlinear behavior using finite-element modeling of the chip-based trap potential. This work may constitute a first step toward quantum experiments and ultrasensitive inertial sensors with magnetically levitated superconducting microparticles.
  •  
4.
  • Kunakova, Gunta, 1987, et al. (författare)
  • High-Mobility Ambipolar Magnetotransport in Topological Insulator Bi2Se3 Nanoribbons
  • 2021
  • Ingår i: Physical Review Applied. - 2331-7019. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoribbons of topological insulators (TIs) have been suggested for a variety of applications exploiting the properties of the topologically protected surface Dirac states. In these proposals it is crucial to achieve a high tunability of the Fermi energy, through the Dirac point while preserving a high mobility of the involved carriers. Tunable transport in TI nanoribbons has been achieved by chemical doping of the materials so to reduce the bulk carriers' concentration, however at the expense of the mobility of the surface Dirac electrons, which is substantially reduced. Here we study bare Bi2Se3 nanoribbons transferred on a variety of oxide substrates and demonstrate that the use of a large relative permittivity SrTiO3 substrate enables the Fermi energy to be tuned through the Dirac point and an ambipolar field effect to be obtained. Through magnetotransport and Hall conductance measurements, performed on single Bi2Se3 nanoribbons, we demonstrate that electron and hole carriers are exclusively high-mobility Dirac electrons, without any bulk contribution. The use of SrTiO3 allows therefore an easy field effect gating in TI nanostructures providing an ideal platform to take advantage of the properties of topological surface states.
  •  
5.
  • Trabaldo, Edoardo, 1990, et al. (författare)
  • Mapping the Phase Diagram of a YBa2Cu3 O7-δ Nanowire Through Electromigration
  • 2022
  • Ingår i: Physical Review Applied. - 2331-7019. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We use electromigration (EM) to tune the oxygen content of YBa2Cu3O7-δ (YBCO) nanowires. During EM, the dopant oxygen atoms in the nanowire are moved under the combined effect of electrostatic force and Joule heating. The EM current can be tuned to either deplete or replenish nanowires with oxygen, allowing fine tuning of its hole-doping level. Electrical transport measurements and Kelvin probe microscopy corroborate good homogeneity of the doping level along the electromigrated nanowires. Thus, EM provides an effective method to study transport properties of YBCO in a wide doping range at the nanoscale in one and the same device.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy