SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2352 2496 ;spr:eng"

Sökning: L773:2352 2496 > Engelska

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andren, Henrik (författare)
  • Can we save large carnivores without losing large carnivore science?
  • 2017
  • Ingår i: Food Webs. - : Elsevier BV. - 2352-2496. ; 12, s. 64-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Large carnivores are depicted to shape entire ecosystems through top-down processes. Studies describing these processes are often used to support interventionist wildlife management practices, including carnivore reintroduction or lethal control programs. Unfortunately, there is an increasing tendency to ignore, disregard or devalue fundamental principles of the scientific method when communicating the reliability of current evidence for the ecological roles that large carnivores may play, eroding public confidence in large carnivore science and scientists. Here, we discuss six interrelated issues that currently undermine the reliability of the available literature on the ecological roles of large carnivores: (1) the overall paucity of available data, (2) reliability of carnivore population sampling techniques, (3) general disregard for alternative hypotheses to top-down forcing, (4) lack of applied science studies, (5) frequent use of logical fallacies, and (6) generalisation of results from relatively pristine systems to those substantially altered by humans. We first describe how widespread these issues are, and given this, show, for example, that evidence for the roles of wolves (Canis lupus) and dingoes (Canis lupus dingo) in initiating trophic cascades is not as strong as is often claimed. Managers and policy makers should exercise caution when relying on this literature to inform wildlife management decisions. We emphasise the value of manipulative experiments and discuss the role of scientific knowledge in the decision-making process. We hope that the issues we raise here prompt deeper consideration of actual evidence, leading towards an improvement in both the rigour and communication of large carnivore science.
  •  
2.
  •  
3.
  • Cirtwill, Alyssa, et al. (författare)
  • A review of species role concepts in food webs
  • 2018
  • Ingår i: Food Webs. - : Elsevier BV. - 2352-2496. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Many different concepts have been used to describe species' roles in food webs (i.e., the ways in which species participate in their communities as consumers and resources). As each concept focuses on a different aspect of food-web structure, it can be difficult to relate these concepts to each other and to other aspects of ecology. Here we use the Eltonian niche as an overarching framework, within which we summarize several commonly-used role concepts (degree, trophic level, motif roles, and centrality). We focus mainly on the topological versions of these concepts but, where dynamical versions of a role concept exist, we acknowledge these as well. Our aim is to highlight areas of overlap and ambiguity between different role concepts and to describe how these roles can be used to group species according to different strategies (i.e., equivalence and functional roles). The existence of “gray areas” between role concepts make it essential for authors to carefully consider both which role concept(s) are most appropriate for the analyses they wish to conduct and what aspect of species' niches (if any) they wish to address. The ecological meaning of differences between species' roles can change dramatically depending on which role concept(s) are used.
  •  
4.
  •  
5.
  • Marker, Jeffery, et al. (författare)
  • Small stream predators rely heavily on terrestrial matter energy input in the fall, regardless of riparian buffer size
  • 2023
  • Ingår i: Food Webs. - : Elsevier. - 2352-2496. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Stream ecosystems are reliant on the reciprocal exchange of terrestrial and aquatic energy subsides to maintain a productive and stable food web. Land use around streams can have strong effects on the size and availability of resource subsidies for stream and riparian predators such as fish and spiders. A common forestry technique around streams is the establishment of forested buffers to protect aquatic and riparian ecosystems from upland disturbances. Buffer size may determine prey abundance, richness, and spatial extent of prey reach into both the aquatic and terrestrial systems. To test the effects of forested buffers subsidy direction, we explored the carbon and nitrogen stable isotope signatures of brown trout (Salmo trutta), Tetragnathidae and Lycosidae spiders, and their aquatic and terrestrial prey sources around twelve streams in southern Sweden. For both predator groups, buffer presence showed no effect on resource subsidy source. We found that both brown trout and spiders are significantly reliant on terrestrial sources of prey for their diets in the fall. To support the terrestrial subsidy into small streams it is vital to maintain ecologically functional riparian zones by conserving complex surrounding habitats that optimize habitat and both terrestrial and aquatic prey diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy