SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2352 8737 ;pers:(Zetterberg Henrik 1973)"

Search: L773:2352 8737 > Zetterberg Henrik 1973

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benussi, A., et al. (author)
  • Differences and similarities between familial and sporadic frontotemporal dementia: An Italian single-center cohort study
  • 2022
  • In: Alzheimer's and Dementia: Translational Research and Clinical Interventions. - : Wiley. - 2352-8737. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Introduction The possibility to generalize our understandings on treatments and assessments to both familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD) is a fundamental perspective for the near future, considering the constant advancement in potential disease-modifying therapies that target particular genetic forms of FTD. We aimed to investigate differences in clinical features, cerebrospinal fluid (CSF), and blood-based biomarkers between f-FTD and s-FTD. Methods In this longitudinal cohort study, we evaluated a consecutive sample of symptomatic FTD patients, classified as f-FTD and s-FTD according to Goldman scores (GS). All patients underwent clinical, behavioral, and neuropsychiatric symptom assessment, CSF biomarkers and serum neurofilament light (NfL) analysis, and brain atrophy evaluation with magnetic resonance imaging. Results Of 570 patients with FTD, 123 were classified as f-FTD, and 447 as s-FTD. In the f-FTD group, 95 had a pathogenic FTD mutation while 28 were classified as GS = 1 or 2; of the s-FTD group, 133 were classified as GS = 3 and 314 with GS = 4. f-FTD and s-FTD cases showed comparable demographic features, except for younger age at disease onset, age at diagnosis, and higher years of education in the f-FTD group (all P < .05). f-FTD showed worse behavioral disturbances as measured with Frontal Behavioral Inventory (FBI) negative behaviors (14.0 +/- 7.6 vs. 11.6 +/- 7.4, P = .002), and positive behaviors (20.0 +/- 11.0 vs. 17.4 +/- 11.8, P = .031). Serum NfL concentrations were higher in patients with f-FTD (70.9 +/- 37.9 pg/mL) compared to s-FTD patients (37.3 +/- 24.2 pg/mL, P < .001), and f-FTD showed greater brain atrophy in the frontal and temporal regions and basal ganglia. Patients with f-FTD had significantly shorter survival than those with s-FTD (P = .004). Discussion f-FTD and s-FTD are very similar clinical entities, but with different biological mechanisms, and different rates of progression. The parallel characterization of both f-FTD and s-FTD will improve our understanding of the disease, and aid in designing future clinical trials for both genetic and sporadic forms of FTD. Highlights Do clinical features and biomarkers differ between patients with familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD)? In this cohort study of 570 patients with FTD, f-FTD and s-FTD share similar demographic features, but with younger age at disease onset and diagnosis in the f-FTD group. f-FTD showed higher serum neurofilament light concentrations, greater brain damage, and shorter survival, compared to s-FTD. f-FTD and s-FTD are very similar clinical entities, but with different cognitive reserve mechanisms and different rates of progression.
  •  
2.
  • Brum, Wagner S., et al. (author)
  • A three-range approach enhances the prognostic utility of CSF biomarkers in Alzheimer's disease.
  • 2022
  • In: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease consensus recommends biomarker dichotomization, a practice with well-described clinical strengths and methodological limitations. Although neuroimaging studies have explored alternative biomarker interpretation strategies, a formally defined three-range approach and its prognostic impact remains under-explored for cerebrospinal fluid (CSF) biomarkers .With two-graph receiver-operating characteristics based on different reference schemes, we derived three-range cut-points for CSF Elecsys biomarkers. According to baseline CSF status, we assessed the prognostic utility of this in predicting risk of clinical progression and longitudinal trajectories of cognitive decline and amyloid-beta (Aβ) positron emission tomography (PET) accumulation in non-demented individuals (Alzheimer's Disease Neuroimaging Initiative [ADNI]; n=1246). In all analyses, we compared herein-derived three-range CSF cut-points to previously described binary ones.In our main longitudinal analyses, we highlight CSF p-tau181/Aβ1-42 three-range cut-points derived based on the cognitively normal Aβ-PET negative versus dementia Aβ-PET positive reference scheme for best depicting a prognostically relevant biomarker abnormality range. Longitudinally, our approach revealed a divergent intermediate cognitive trajectory undetected by dichotomization and a clearly abnormal group at higher risk for cognitive decline, with power analyses suggesting the latter group as potential trial enrichment candidates. Furthermore, we demonstrate that individuals with intermediate-range CSF status have similar rates of Aβ deposition to those in the clearly abnormal group.The proposed approach can refine clinico-biological prognostic assessment and potentially enhance trial recruitment, as it captures faster biomarker-related cognitive decline in comparison to binary cut-points. Although this approach has implications for trial recruitment and observational studies, further discussion is needed regarding clinical practice applications.
  •  
3.
  • Jensen, C. S., et al. (author)
  • Effect of physical exercise on markers of neuronal dysfunction in cerebrospinal fluid in patients with Alzheimer's disease
  • 2017
  • In: Alzheimer's and Dementia: Translational Research and Clinical Interventions. - : Wiley. - 2352-8737. ; 3:2, s. 284-290
  • Journal article (peer-reviewed)abstract
    • Introduction Physical exercise has gained increasing focus as a potential mean to maintain cognitive function in patients with Alzheimer's disease (AD). Alongside the markers of specific AD pathology (amyloid β and tau), other pathologies such as neuronal damage and synaptic loss have been proposed as markers of the disease. Here, we study the effect of physical exercise on biomarkers of neuronal and synaptic integrity. Methods Cerebrospinal fluid (CSF) from 51 AD subjects who participated in the randomized controlled trial Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) was analyzed for the concentration of neurofilament light (NFL), neurogranin (Ng), visinin-like protein-1 (VILIP-1), and chitinase-3–like protein 1 (YKL-40). Participants were subjected to either 16weeks of moderate- to high-intensity exercise (n=25) or treatment as usual (control group, n=26), and CSF was collected before and after intervention. Results No significant differences in CSF concentrations of VILIP-1, YKL-40, NFL, and Ng were observed when comparing mean change from baseline between the exercise and control groups. Similarly, when classifying subjects based on their exercise levels, no significant changes were observed for the biomarkers in the control group compared with the high-exercise group (attending 80% of the exercise sessions with an intensity of 70% of maximum heart rate or above). Discussion These results are not supportive of a modulatory effect of physical exercise on the selected biomarkers of neuronal and synaptic integrity in patients with AD. © 2017 The Authors
  •  
4.
  • Ly, Han, et al. (author)
  • The association of circulating amylin with β-amyloid in familial Alzheimer's disease.
  • 2021
  • In: Alzheimer's & dementia. - : Wiley. - 2352-8737. ; 7:1
  • Journal article (peer-reviewed)abstract
    • This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD).Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats.Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding.These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms.
  •  
5.
  • Merluzzi, A. P., et al. (author)
  • Differential effects of neurodegeneration biomarkers on subclinical cognitive decline
  • 2019
  • In: Alzheimer's and Dementia: Translational Research and Clinical Interventions. - : Wiley. - 2352-8737. ; 5, s. 129-138
  • Journal article (peer-reviewed)abstract
    • Introduction: Neurodegeneration appears to be the biological mechanism most proximate to cognitive decline in Alzheimer's disease. We test whether t-tau and alternative biomarkers of neurodegeneration—neurogranin and neurofilament light protein (NFL)—add value in predicting subclinical cognitive decline. Methods: One hundred fifty cognitively unimpaired participants received a lumbar puncture for cerebrospinal fluid and at least two neuropsychological examinations (mean age at first visit = 59.3 ± 6.3 years; 67% female). Linear mixed effects models were used with cognitive composite scores as outcomes. Neurodegeneration interactions terms were the primary predictors of interest: age × NFL or age × neurogranin or age × t-tau. Models were compared using likelihood ratio tests. Results: Age × NFL accounted for a significant amount of variation in longitudinal change on preclinical Alzheimer's cognitive composite scores, memory composite scores, and learning scores, whereas age × neurogranin and age × t-tau did not. Discussion: These data suggest that NFL may be more sensitive to subclinical cognitive decline compared to other proposed biomarkers for neurodegeneration. © 2019
  •  
6.
  • Nair, Ajay Kumar, et al. (author)
  • Asthma amplifies dementia risk: Evidence from CSF biomarkers and cognitive decline.
  • 2022
  • In: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Evidence from epidemiology, neuroimaging, and animal models indicates that asthma adversely affects the brain, but the nature and extent of neuropathophysiological impact remain unclear.We tested the hypothesis that asthma is a risk factor for dementia by comparing cognitive performance and cerebrospinal fluid biomarkers of glial activation/neuroinflammation, neurodegeneration, and Alzheimer's disease (AD) pathology in 60 participants with asthma to 315 non-asthma age-matched control participants (45-93 years), in a sample enriched for AD risk.Participants with severe asthma had higher neurogranin concentrations compared to controls and those with mild asthma. Positive relationships between cardiovascular risk and concentrations of neurogranin and α-synuclein were amplified in severe asthma. Severe asthma also amplified the deleterious associations that apolipoprotein E ε4 carrier status, cardiovascular risk, and phosphorylated tau181/amyloid beta42 have with rate of cognitive decline.Our data suggest that severe asthma is associated with synaptic degeneration and may compound risk for dementia posed by cardiovascular disease and genetic predisposition.Those with severe asthma showed evidence of higher dementia risk than controls evidenced by: higher levels of the synaptic degeneration biomarker neurogranin regardless of cognitive status, cardiovascular or genetic risk, and controlling for demographics.steeper increase in levels of synaptic degeneration biomarkers neurogranin and α-synuclein with increasing cardiovascular risk.accelerated cognitive decline with higher cardiovascular risk, genetic predisposition, or pathological tau.
  •  
7.
  • Samuelsson, Jessica, et al. (author)
  • A Western-style dietary pattern is associated with cerebrospinal fluid biomarker levels for preclinical Alzheimer's disease -A population-based cross-sectional study among 70-year-olds
  • 2021
  • In: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 7:1, s. 10
  • Journal article (peer-reviewed)abstract
    • Background: Diet may be a modifiable factor for reducing the risk of Alzheimer's disease (AD). Western-style dietary patterns are considered to increase the risk, whereas Mediterranean-style dietary patterns are considered to reduce the risk. An association between diet and AD-related biomarkers have been suggested, but studies are limited. Aim: To investigate potential relations between dietary patterns and cerebrospinal fluid (CSF) biomarkers for AD among dementia-free older adults. Methods: Data were derived from the population-based Gothenburg H70 Birth Cohort Studies, Sweden. A total of 269 dementia-free 70-year-olds with dietary and cerebrospinal fluid (CSF) amyloid beta (Aβ42 and Aβ40), total tau (t-tau), and phosphorylated tau (p-tau) data were investigated. Dietary intake was determined by the diet history method, and four dietary patterns were derived by principal component analysis. A Western dietary pattern, a Mediterranean/prudent dietary pattern, a high-protein and alcohol pattern, and a high-total and saturated fat pattern. Logistic regression models, with CSF biomarker pathology (yes/no) as dependent variables, and linear regression models with continuous CSF biomarker levels as dependent variables were performed. The analyses were adjusted for sex, energy intake, body mass index (BMI), educational level, and physical activity level. Results: The odds ratio for having total tau pathology (odds ratio [OR] 1.43; 95% confidence interval [CI] 1.02 to 2.01) and preclinical AD (Aβ42 and tau pathology; OR 1.79; 95% CI 1.03 to 3.10) was higher among those with a higher adherence to a Western dietary pattern. There were no other associations between the dietary patterns and CSF biomarkers that remained significant in both unadjusted and adjusted models. Discussion: Our findings suggest that higher adherence to a Western dietary pattern may be associated with pathological levels of AD biomarkers in the preclinical phase of AD. These findings can be added to the increasing amount of evidence linking dietwith AD and may be useful for future intervention studies investigating dietary intake in relation to AD.
  •  
8.
  • Stamate, Daniel, et al. (author)
  • A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood : Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
  • 2019
  • In: Alzheimer’s & Dementia. - : John Wiley & Sons. - 2352-8737. ; 5:C, s. 933-938
  • Journal article (peer-reviewed)abstract
    • IntroductionMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers.MethodsThis study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).ResultsOn the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DiscussionThis study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
  •  
9.
  • Sun, Xiaoyan, et al. (author)
  • Association of neurogranin gene expression with Alzheimer's disease pathology in the perirhinal cortex.
  • 2021
  • In: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Synaptic damage is a key pathology of Alzheimer's disease (AD). The mechanism underlying synaptic vulnerability in AD remains elusive.Using a large-scale transcriptomic dataset, we analyzed the neurogranin-centered integrative gene network and assessed the correlation of neurogranin (NRGN) gene expression with AD pathology in post mortem brains. We studied the association of NRGN expression with Clinical Dementia Rating (CDR) and neuropathological diagnosis of AD.We find that the genes positively correlated with NRGN expression in AD are involved in synaptic transmission and cation channel pathways. NRGN expression is correlated with amyloid and tau pathology in the perirhinal cortex of post mortem brains. NRGN expression is associated with the diagnosis of AD and correlated with CDR.Transcriptional regulation of the gene encoding for synaptic protein is involved in selective synaptic damage in AD. Identifying the genes associated with synaptic damage pathways in AD may provide targets for intervention.
  •  
10.
  • Vontell, Regina T., et al. (author)
  • Association of region-specific hippocampal reduction of neurogranin with inflammasome proteins in post mortem brains of Alzheimer's disease
  • 2024
  • In: ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS. - 2352-8737. ; 10:1
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Neurogranin (Ng) is considered a biomarker for synaptic dysfunction in Alzheimer's disease (AD). In contrast, the inflammasome complex has been shown to exacerbate AD pathology.METHODS: We investigated the protein expression, morphological differences of Ng, and correlated Ng to hyperphosphorylated tau in the post mortem brains of 17 AD cases and 17 age- and sex-matched controls. In addition, we correlated the Ng expression with two different epitopes of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC).RESULTS: We show a reduction of Ng immunopositive neurons and morphological differences in AD compared to controls. Ng immunostaining was negatively correlated with neurofibrillary tangles, humanized anti-ASC (IC100) positive neurons and anti-ASC positive microglia, in AD.DISCUSSION: The finding of a negative correlation between Ng and ASC speck protein expression in post mortem brains of AD suggests that the activation of inflammasome/ASC speck pathway may play an important role in synaptic degeneration in AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view