SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2542 5196 ;mspu:(article)"

Sökning: L773:2542 5196 > Tidskriftsartikel

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  •  
3.
  • Laine, Jessica E., et al. (författare)
  • Co-benefits from sustainable dietary shifts for population and environmental health : an assessment from a large European cohort study
  • 2021
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 5:11, s. 786-796
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Unhealthy diets, the rise of non-communicable diseases, and the declining health of the planet are highly intertwined, where food production and consumption are major drivers of increases in greenhouse gas emissions, substantial land use, and adverse health such as cancer and mortality. To assess the potential co-benefits from shifting to more sustainable diets, we aimed to investigate the associations of dietary greenhouse gas emissions and land use with all-cause and cause-specific mortality and cancer incidence rates. Methods: Using data from 443 991 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a multicentre prospective cohort, we estimated associations between dietary contributions to greenhouse gas emissions and land use and all-cause and cause-specific mortality and incident cancers using Cox proportional hazards regression models. The main exposures were modelled as quartiles. Co-benefits, encompassing the potential effects of alternative diets on all-cause mortality and cancer and potential reductions in greenhouse gas emissions and land use, were estimated with counterfactual attributable fraction intervention models, simulating potential effects of dietary shifts based on the EAT–Lancet reference diet. Findings: In the pooled analysis, there was an association between levels of dietary greenhouse gas emissions and all-cause mortality (adjusted hazard ratio [HR] 1·13 [95% CI 1·10–1·16]) and between land use and all-cause mortality (1·18 [1·15–1·21]) when comparing the fourth quartile to the first quartile. Similar associations were observed for cause-specific mortality. Associations were also observed between all-cause cancer incidence rates and greenhouse gas emissions, when comparing the fourth quartile to the first quartile (adjusted HR 1·11 [95% CI 1·09–1·14]) and between all-cause cancer incidence rates and land use (1·13 [1·10–1·15]); however, estimates differed by cancer type. Through counterfactual attributable fraction modelling of shifts in levels of adherence to the EAT–Lancet diet, we estimated that up to 19–63% of deaths and up to 10–39% of cancers could be prevented, in a 20-year risk period, by different levels of adherence to the EAT–Lancet reference diet. Additionally, switching from lower adherence to the EAT–Lancet reference diet to higher adherence could potentially reduce food-associated greenhouse gas emissions up to 50% and land use up to 62%. Interpretation: Our results indicate that shifts towards universally sustainable diets could lead to co-benefits, such as minimising diet-related greenhouse gas emissions and land use, reducing the environmental footprint, aiding in climate change mitigation, and improving population health. Funding: European Commission (DG-SANCO), the International Agency for Research on Cancer (IARC), MRC Early Career Fellowship (MR/M501669/1).
  •  
4.
  •  
5.
  •  
6.
  • Arisco, Nicholas J, et al. (författare)
  • The effect of extreme temperature and precipitation on cause-specific deaths in rural Burkina Faso : a longitudinal study
  • 2023
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 7:6, s. e478-e489
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Extreme weather is becoming more common due to climate change and threatens human health through climate-sensitive diseases, with very uneven effects around the globe. Low-income, rural populations in the Sahel region of west Africa are projected to be severely affected by climate change. Climate-sensitive disease burdens have been linked to weather conditions in areas of the Sahel, although comprehensive, disease-specific empirical evidence on these relationships is scarce. In this study, we aim to provide an analysis of the associations between weather conditions and cause-specific deaths over a 16-year period in Nouna, Burkina Faso.Methods: In this longitudinal study, we used de-identified, daily cause-of-death data from the Health and Demographic Surveillance System led by the Centre de Recherche en Santé de Nouna (CRSN) in the National Institute of Public Health of Burkina Faso, to assess temporal associations between daily and weekly weather conditions (maximum temperature and total precipitation) and deaths attributed to specific climate-sensitive diseases. We implemented distributed-lag zero-inflated Poisson models for 13 disease-age groups at daily and weekly time lags. We included all deaths from climate-sensitive diseases in the CRSN demographic surveillance area from Jan 1, 2000 to Dec 31, 2015 in the analysis. We report the exposure–response relationships at percentiles representative of the exposure distributions of temperature and precipitation in the study area.Findings: Of 8256 total deaths in the CRSN demographic surveillance area over the observation period, 6185 (74·9%) were caused by climate-sensitive diseases. Deaths from communicable diseases were most common. Heightened risk of death from all climate-sensitive communicable diseases, and malaria (both across all ages and in children younger than 5 years), was associated with 14-day lagged daily maximum temperatures at or above 41·1°C, the 90th percentile of daily maximum temperatures, compared with 36·4°C, the median (all communicable diseases: 41·9°C relative risk [RR] 1·38 [95% CI 1·08–1·77], 42·8°C 1·57 [1·13–2·18]; malaria all ages: 41·1°C 1·47 [1·05–2·05], 41·9°C 1·78 [1·21–2·61], 42·8°C 2·35 [1·37–4·03]; malaria younger than 5 years: 41·9°C 1·67 [1·02–2·73]). Heightened risk of death from communicable diseases was also associated with 14-day lagged total daily precipitation at or below 0·1 cm, the 49th percentile of total daily precipitation, compared with 1·4 cm, the median (all communicable diseases: 0·0 cm 1·04 [1·02–1·07], 0·1 cm 1·01 [1·006–1·02]; malaria all ages: 0·0 cm 1·04 [1·01–1·08], 0·1 cm 1·02 [1·00–1·03]; malaria younger than 5 years: 0·0 cm 1·05 [1·01–1·10], 0·1 cm 1·02 [1·00–1·04]). The only significant association with a non-communicable disease outcome was a heightened risk of death from climate-sensitive cardiovascular diseases in individuals aged 65 years and older associated with 7-day lagged daily maximum temperatures at or above 41·9°C (41·9°C 2·25 [1·06–4·81], 42·8°C 3·68 [1·46–9·25]). Over 8 cumulative weeks, we found that the risk of death from communicable diseases was heightened at all ages from temperatures at or above 41·1°C (41·1°C 1·23 [1·05–1·43], 41·9°C 1·30 [1·08–1·56], 42·8°C 1·35 [1·09–1·66]) and risk of death from malaria was heightened by precipitation at or above 45·3 cm (all ages: 45·3 cm 1·68 [1·31–2·14], 61·6 cm 1·72 [1·27–2·31], 87·7 cm 1·72 [1·16–2·55]; children younger than 5 years: 45·3 cm 1·81 [1·36–2·41], 61·6 cm 1·82 [1·29–2·56], 87·7 cm 1·93 [1·24–3·00]).Interpretation: Our results indicate a high burden of death related to extreme weather in the Sahel region of west Africa. This burden is likely to increase with climate change. Climate preparedness programmes—such as extreme weather alerts, passive cooling architecture, and rainwater drainage—should be tested and implemented to prevent deaths from climate-sensitive diseases in vulnerable communities in Burkina Faso and the wider Sahel region. 
  •  
7.
  • Chen, Gongbo, et al. (författare)
  • Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:9, s. e579-e587
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world.METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated.FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period.INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
  •  
8.
  • Chen, Kai, et al. (författare)
  • Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities
  • 2021
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 5:4, s. e191-e199
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. Methods: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure–response curve and evaluated the possibility of a threshold below which health is not affected. Findings: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32–1·50) increase in daily total mortality. The pooled exposure–response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure–response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. Interpretation: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. Funding: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council.
  •  
9.
  • Colon-Gonzalez, J. Felipe, et al. (författare)
  • Projecting the risk of mosquito-borne diseases in a warmer and more populated world : a multi-model, multi-scenario intercomparison modelling study
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:7, s. E404-E414
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient.Methods: Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways.Findings: We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas.Interpretation: Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
Typ av publikation
Typ av innehåll
refereegranskat (33)
Författare/redaktör
Gasparrini, Antonio (6)
Sera, Francesco (6)
Guo, Yuming (6)
Lavigne, Eric (6)
Tong, Shilu (6)
Forsberg, Bertil, pr ... (5)
visa fler...
Pascal, Mathilde (5)
Schwartz, Joel (5)
Armstrong, Ben (5)
Bell, Michelle L (5)
Hashizume, Masahiro (5)
Honda, Yasushi (5)
Íñiguez, Carmen (5)
Kan, Haidong (5)
Kim, Ho (5)
Kyselý, Jan (5)
Ragettli, Martina S (5)
Tobias, Aurelio (5)
Urban, Aleš (5)
Zanobetti, Antonella (5)
Zeka, Ariana (5)
Madureira, Joana (5)
Jaakkola, Jouni J. K ... (5)
Rocklöv, Joacim, Pro ... (4)
Åström, Christofer, ... (4)
Katsouyanni, Klea (4)
Vicedo-Cabrera, Ana ... (4)
de Sousa Zanotti Sta ... (4)
Dang, Tran Ngoc (4)
Goodman, Patrick (4)
Seposo, Xerxes (4)
Schneider, Alexandra (4)
Nascimento Saldiva, ... (4)
Nunes, Baltazar (4)
Scortichini, Matteo (3)
Michelozzi, Paola (3)
Stafoggia, Massimo (3)
Abrutzky, Rosana (3)
Orru, Hans (3)
De la Cruz Valencia, ... (3)
Houthuijs, Danny (3)
Royé, Dominic (3)
Overcenco, Ala (3)
Entezari, Alireza (3)
Alahmad, Barrak (3)
Pan, Shih-Chun (3)
Ameling, Caroline (3)
Van Dung, Do (3)
Mayvaneh, Fatemeh (3)
Carrasco-Escobar, Ga ... (3)
visa färre...
Lärosäte
Umeå universitet (12)
Karolinska Institutet (10)
Lunds universitet (4)
Stockholms universitet (3)
Örebro universitet (3)
Göteborgs universitet (2)
visa fler...
Uppsala universitet (1)
Karlstads universitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (5)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy