SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:8756 3282 OR L773:1873 2763 ;pers:(McGuigan Fiona)"

Sökning: L773:8756 3282 OR L773:1873 2763 > McGuigan Fiona

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cosman, Felicia, et al. (författare)
  • Determinants of stress fracture risk in United States Military Academy cadets
  • 2013
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 55:2, s. 359-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prior studies have identified some risk factors for stress fracture in athletes and military recruits. Objective: To determine whether historical factors, physical measures, biochemical variables of skeletal metabolism, genetic factors, bone density (BMD) and bone size could predict risk of stress fracture over 4 years in physically fit cadets at the US Military Academy (USMA). Methods: Baseline surveys, assessments of height, weight, scores on the Army Physical Fitness Test, and peripheral BMD were obtained in all cadets (755 men, 136 women), and central BMD in a subset. Blood samples were analyzed for variables of calcium homeostasis, bone turnover, and selected hormones and genetic factors. Stress fractures were adjudicated by review of orthopedic notes and imaging reports. Results: 5.7% of male and 19.1% of female cadets had at least 1 stress fracture (58% metatarsal and 29% tibial), most within 3 months of entry to USMA. In males, risk of stress fracture was higher in those who exercised <7 h per week during the prior year (RR 2.31; CI 1.29,4.12), and in those with smaller tibial cortical area (RR 1.12; CI 1.03,1.23), lower tibial bone mineral content (RR 1.11; CI 1.03,1.20) and smaller femoral neck diameter (RR 1.35, CI 1.01, 1.81). In women, higher stress fracture risk was seen in those with shorter time since menarche (RR 1.44 per year; Cl 1.19, 1.73) and smaller femoral neck diameter (RR 1.16; Cl 1.01, 1.33.). Conclusion: Although prior physical training in men, length of prior estrogen exposure in women and leg bone dimensions in both genders played a role, the maximum variance explained by all of these factors was below 10%. We conclude these factors play a minor role in the development of stress fractures in physically fit USMA cadets. (C) 2013 Elsevier Inc. All rights reserved.
  •  
2.
  • Herlin, Maria, et al. (författare)
  • Polymorphisms in inflammation associated genes ALOX15 and IL-6 are associated with bone properties in young women and fracture in elderly.
  • 2015
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 79, s. 105-109
  • Tidskriftsartikel (refereegranskat)abstract
    • ALOX12 and ALOX15 encode arachidonate lipoxygenases which produce lipid metabolites involved in inflammatory processes. Metabolites generated by ALOX12 and ALOX15 can activate the expression of the potent pro-inflammatory cytokine IL-6, and produce endogenous ligands for PPARG. In this study, polymorphisms in ALOX12, ALOX15, IL6 and PPARG were investigated for association with bone properties in young and elderly Swedish women.
  •  
3.
  • Kumar, Jitender, et al. (författare)
  • LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways.
  • 2011
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 49, s. 343-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common complex disorder in postmenopausal women leading to changes in the micro-architecture of bone and increased risk of fracture. Members of the low-density lipoprotein receptor-related protein (LRP) gene family regulates the development and physiology of bone through the Wnt/β-catenin (Wnt) pathway that in turn cross-talks with the bone morphogenetic protein (BMP) pathway. In two cohorts of Swedish women: OPRA (n=1002; age 75years) and PEAK-25 (n=1005; age 25years), eleven single nucleotide polymorphisms (SNPs) from Wnt pathway genes (LRP4; LRP5; G protein-coupled receptor 177, GPR177) were analyzed for association with Bone Mineral Density (BMD), rate of bone loss, hip geometry, quantitative ultrasound and fracture. Additionally, interaction of LRP4 with LRP5, GPR177 and BMP2 were analyzed. LRP4 (rs6485702) was associated with higher total body (TB) and lumbar spine (LS) BMD in the PEAK-25 cohort (p=0.006 and 0.005 respectively), and interaction was observed with LRP5 (p=0.007) and BMP2 (p=0.004) for TB BMD. LRP4 also showed significant interaction with LRP5 for femoral neck (FN) and LS BMD in this cohort. In the OPRA cohort, LRP4 polymorphisms were associated with significantly lower fracture incidence overall (p=0.008-0.001) and fewer hip fractures (rs3816614, p=0.006). Significant interaction in the OPRA cohort was observed for LRP4 with BMP2 and GPR177 for FN BMD as well as for rate of bone loss at TB and FN (p=0.007-0.0001). In conclusion, LRP4 and interaction between LRP4 and genes in the Wnt and BMP signaling pathways modulate bone phenotypes including peak bone mass and fracture, the clinical endpoint of osteoporosis.
  •  
4.
  • Lagerholm, Sofia, et al. (författare)
  • Genetic loci for bone architecture determined by three-dimensional CT in crosses with the diabetic GK rat.
  • 2010
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 47, s. 1039-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • The F344 rat carries alleles contributing to bone fragility while the GK rat spontaneously develops type-2 diabetes. These characteristics make F344xGK crosses well suited for the identification of genes related to bone size and allow for future investigation on the association with type-2 diabetes. The aim of this study was to identify quantitative trait loci (QTLs) for bone size phenotypes measured by a new application of three-dimensional computed tomography (3DCT) and to investigate the effects of sex- and reciprocal cross. Tibia from male and female GK and F344 rats, representing the parental, F1 and F2 generations, were examined with 3DCT and analyzed for: total and cortical volumetric BMD, straight and curved length, peri- and endosteal area at mid-shaft. F2 progeny (108 male and 98 female) were genotyped with 192 genome-wide microsatellite markers (average distance 10cM). Sex- and reciprocal cross-separated QTL analyses were performed for the identification of QTLs linked to 3DCT phenotypes and true interactions were confirmed by likelihood ratio analysis in all F2 animals. Several genome-wide significant QTLs were found in the sex- and reciprocal cross-separated progeny on chromosomes (chr) 1, 3, 4, 9, 10, 14, and 17. Overlapping QTLs for both males and females in the (GKxF344)F2 progeny were located on chr 1 (39-67cM). This region confirms previously reported pQCT QTLs and overlaps loci for fasting glucose. Sex separated linkage analysis confirmed a male specific QTL on chr 9 (67-82cM) for endosteal area at the fibula site. Analyses separating the F2 population both by sex and reciprocal cross identified cross specific QTLs on chr 14 (males) and chr 3 and 4 (females). Two loci, chr 4 and 6, are unique to 3DCT and separate from pQCT generated loci. The 3DCT method was highly reproducible and provided high precision measurements of bone size in the rat enabling identification of new sex- and cross-specific loci. The QTLs on chr 1 indicate potential genetic association between bone-related phenotypes and traits affecting type-2 diabetes. The results illustrate the complexity of the genetic architecture of bone size phenotypes and demonstrate the importance of complementary methods for bone analysis.
  •  
5.
  •  
6.
  • Swanberg, Maria, et al. (författare)
  • Polymorphisms in the macrophage migration inhibitory factor gene and bone loss in postmenopausal women.
  • 2010
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 47:2, s. 424-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a severe condition in postmenopausal women and a common cause of fracture. Osteoporosis is a complex disease with a strong genetic impact, but susceptibility is determined by many genes with modest effects and environmental factors. Only a handful of genes consistently associated with osteoporosis have been identified so far. Inflammation affects bone metabolism by interfering with the interplay between bone resorption and formation, and many inflammatory mediators are involved in natural bone remodeling. The cytokine macrophage migration inhibitory factor (MIF) has been shown to affect bone density in rodents, and polymorphisms in the human MIF promoter are associated with inflammatory disorders such as rheumatoid arthritis. We investigated the association of polymorphisms in the MIF gene with bone mineral density (BMD) and bone loss in 1002 elderly women using MIF promoter polymorphisms MIF-CATT(5-8) and rs755622(G/C) located -794 and -173 bp upstream of the transcriptional start site. Bone loss was estimated both by the change in BMD over 5 years and by the levels of bone resorption markers in serum measured at four occasions during a 5-year period. The MIF-CATT(7)/rs755622(C) haplotype was associated with increased rate of bone loss during 5 years at the femoral neck (p<0.05) and total hip (p<0.05). In addition, the MIF-CATT(7)/rs755622(C) haplotype carriers had higher levels of the bone turnover marker serum C-terminal cross-linking telopeptide of type I collagen (S-CTX-I, p<0.01) during the 5 year follow-up period. There was no association between MIF-CATT(7)/rs755622(C) and baseline BMD at femoral neck, total hip or lumbar spine. We conclude that MIF promoter polymorphisms have modest effects on bone remodeling and are associated with the rate of bone loss in elderly women.
  •  
7.
  • Tenne, Max, et al. (författare)
  • Genetic variation in the PTH pathway and bone phenotypes in elderly women: Evaluation of PTH, PTHLH, PTHR1 and PTHR2 genes.
  • 2008
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 42, s. 719-727
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Parathyroid hormone (PTH) is a key regulator of calcium metabolism. Parathyroid hormone-like hormone (PTHrP) contributes to skeletal development through regulation of chondrocyte proliferation and differentiation during early bone growth. Both PTH and PTHrP act through the same receptor (PTHR1). A second receptor, PTHR2, has been identified although its function is comparatively unknown. PTH hyper-secretion induces bone resorption, whereas intermittent injection of PTH increases bone mass. To explore the effects of genetic variation in the PTH pathway, we have analysed variations in PTH, PTHLH, PTHR1 and PTHR2 in relation to bone mass and fracture incidence in elderly women. MATERIALS AND METHODS: This study includes 1044 elderly women, all 75 years old, from the Malmö Osteoporosis Prospective Risk Assessment study (OPRA). Single nucleotide polymorphisms (SNPs) from 4 genes and derived haplotypes in the PTH signaling pathway were analysed in 745-1005 women; 6 SNPs in the PTH gene and 3 SNPs each in the PTHLH, PTHR1 and PTHR2 genes were investigated in relation to BMD (assessed at baseline), fracture (434 prevalent fractures of all types over lifetime, self-reported and 174 incident fractures up to 7 years, X-ray verified) and serum PTH. RESULTS AND CONCLUSION: Individually, SNPs in the 4 loci did not show any significant association with BMD. Neither were PTHLH, PTHR1 and PTHR2 polymorphisms associated with fracture. Three of 5 common haplotypes, accounting for >98% of alleles at the PTH locus, were identified as independent predictors of fracture. Haplotype 9 (19%) was suggestive of an association with fractures of any type sustained during lifetime (p=0.018), with carriers of one or more copies of the haplotype having the lowest incidence (p=0.006). Haplotypes 1 (13%) and 5 (37%) and 9 were suggestive of an association with fractures sustained between 50 and 75 years (p=0.02, p=0.013 and p=0.034). Carriers of haplotypes 1 and 5 were more likely to suffer a fracture (haplotype 1, p=0.045; haplotype 5, p=0.008). We conclude, that while further genotyping across the gene is recommended, in this cohort of elderly Swedish women, polymorphisms in PTH may contribute to the risk of fracture through mechanisms that are independent of BMD.
  •  
8.
  • Jensen, Vivi F.H., et al. (författare)
  • Changes in bone mass associated with obesity and weight loss in humans : Applicability of animal models
  • 2021
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282. ; 145
  • Forskningsöversikt (refereegranskat)abstract
    • The implications of obesity and weight loss for human bone health are not well understood. Although the bone changes associated with weight loss are similar in humans and rodents, that is not the case for obesity. In humans, obesity is generally associated with increased bone mass, an outcome which is exacerbated by advanced age and menopause. In rodents, by contrast, bone mass decreases in proportion to severity and duration of obesity, and is influenced by sex, age and mechanical load. Despite these discrepancies, rodents are frequently used to model the situation in humans. In this review, we summarise the existing knowledge of the effects of obesity and weight loss on bone mass in humans and rodents, focusing on the translatability of findings from animal models. We then describe how animal models should be used to broaden the understanding of the relationship between obesity, weight loss, and skeletal health in humans. Specifically, we highlight the aspects of study design that should be considered to optimise translatability of the rodent models of obesity and weight loss. Notably, the sex, age, and nutritional status of the animals should ideally match those of interest in humans. With these caveats in mind, and depending on the research question asked, our review underscores that animal models can provide valuable information for obesity and weight-management research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy