SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0014 4886 srt2:(2005-2009)"

Sökning: L773:0014 4886 > (2005-2009)

  • Resultat 1-10 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Berglöf, Elisabet, et al. (författare)
  • Locus coeruleus promotes survival of dopamine neurons in ventral mesencephalon : An in oculo grafting study
  • 2009
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 216:1, s. 158-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease is a neurodegenerative disorder where dopamine neurons in the substantia nigra of ventral mesencephalon undergo degeneration. In addition to the loss of dopamine neurons, noradrenaline neurons in the locus coeruleus degenerate, actually to a higher extent than the dopamine neurons. The interaction between these two nuclei is yet not fully known, hence this study was undertaken to investigate the role of locus coeruleus during development of dopamine neurons utilizing the intraocular grafting model. Fetal ventral mesencephalon and locus coeruleus were implanted either as single grafts or co-grafts, placed in direct contact or at a distance. The results revealed that the direct attachment of locus coeruleus to ventral mesencephalon enhanced graft volume and number of tyrosine hydroxylase (TH)-positive neurons in ventral mesencephalic grafts. Cell counts of subpopulations of TH-positive neurons also immunoreactive for aldehyde dehydrogenase 1-A1 (ALDH1) or calbindin, revealed improved survival of ALDH1/TH-positive neurons. However, the number of calbindin/TH-positive neurons was not affected. High density of dopamine-beta-hydroxylase (DBH)-positive innervation in the ventral mesencephalon placed adjacent to locus coeruleus was correlated to the improved survival. Ventral mesencephalic tissue, implanted at a distance to locus coeruleus, did not demonstrate improved survival, although DBH-positive nerve fibers were detected. In conclusion, the direct contact of locus coeruleus resulting in dense noradrenergic innervation of ventral mesencephalon is beneficial for the survival of ventral mesencephalic grafts. Thus, when trying to rescue dopamine neurons in Parkinson's disease, improving the noradrenergic input to the substantia nigra might be worth considering.
  •  
5.
  •  
6.
  •  
7.
  • Bueters, Tjerk, et al. (författare)
  • Degeneration of newly formed CA1 neurons following global ischemia in the rat
  • 2008
  • Ingår i: Experimental Neurology. - New York, USA : Academic Press. - 0014-4886 .- 1090-2430. ; 209:1, s. 114-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The pyramidal neurons of the hippocampal CA1 region are essential for spatial learning and memory and are almost entirely destroyed 7-14 days after transient cerebral ischemia (DAI). Recently, we found that CA1 neurons reappeared at 21-90 DAI, in association with a recovery of ischemia-induced deficits in spatial learning and memory. However, at 125 DAI the number of neurons was fewer than at 90 DAI, suggesting that the new nerve cells undergo neurodegeneration during this time period. We therefore investigated whether neuronal degeneration occurred between 90 and 250 DAI and how this related to learning and memory performance. We found that many of the new CA1 neurons previously seen at 90 DAI had disappeared at 250 DAI. In parallel, large mineralized calcium deposits appeared in the hippocampus and thalamus, in association with neuroinflammatory and astroglial reactions. In spite of the extensive CA1 damage, the ischemic rats showed no deficiencies in spatial learning and memory, as analyzed in the Morris water maze and a complimentary water maze test based on sequential left-right choices. However, ischemia rats showed a general increase in swim length in the Morris water maze suggesting altered search behaviour. Taken together, these results indicate that the CA1 neurons that reappear after transient global ischemia to a large extent degenerate at 125-250 DAI, in parallel with the appearance of a less efficient search strategy.
  •  
8.
  •  
9.
  •  
10.
  • Christophersen, Nicolaj, et al. (författare)
  • Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation.
  • 2007
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 204:2, s. 791-801
  • Tidskriftsartikel (refereegranskat)abstract
    • Affymetrix GeneChip technology and quantitative real-time PCR (Q-PCR) were used to examine changes in gene expression in the adult murine substantia nigra pars compacta (SNc) following lentiviral glial cell line-derived neurotrophic factor (GDNF) delivery in adult striatum. We identified several genes that were upregulated after GDNF treatment. Among these, the gene encoding the transmembrane protein Delta-like 1 homologue (Dlk1) was upregulated with a greater than 4-fold increase in mRNA encoding this protein. Immunohistochemistry with a Dlk1-specific antibody confirmed the observed upregulation with increased positive staining of cell bodies in the SNc and fibers in the striatum. Analysis of the developmental regulation of Dlk1 in the murine ventral midbrain showed that the upregulation of Dlk1 mRNA correlated with the generation of tyrosine hydroxylase (TH)-positive neurons. Furthermore, Dlk1 expression was analyzed in MesC2.10 cells, which are derived from embryonic human mesencephalon and capable of undergoing differentiation into dopaminergic neurons. We detected upregulation of Dlk1 mRNA and protein under conditions where MesC2.10 cells differentiate into a dopaminergic phenotype (41.7+/-7.1% Dlk1+ cells). In contrast, control cultures subjected to default differentiation into non-dopaminergic neurons only expressed very few (3.7+/-1.3%) Dlk1-immunopositive cells. The expression of Dlk1 in MesC2.10 cells was specifically upregulated by the addition of GDNF. Thus, our data suggest that Dlk1 expression precedes the appearance of TH in mesencephalic cells and that levels of Dlk1 are regulated by GDNF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 70

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy