SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 9258 srt2:(2015-2019)"

Sökning: L773:0021 9258 > (2015-2019)

  • Resultat 1-10 av 144
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Mucin-like region of herpes simplex virus type 1 attachment protein gC modulates the virus-glycosaminoglycan interaction.
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:35, s. 21473-21485
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycoprotein C (gC) mediates the attachment of herpes simplex virus type 1 (HSV-1) to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying an HSV-1 mutant lacking the mucin- like domain in gC and the corresponding purified mutant protein (gCΔmuc), in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared to native HSV-1, i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells, and reduced release of viral particles from the surface of infected cells. Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared to native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.
  •  
2.
  • Anandapadamanaban, Madhanagopal, et al. (författare)
  • E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2
  • 2019
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 294:30, s. 11404-11419
  • Tidskriftsartikel (refereegranskat)abstract
    • The E3 ubiquitin-protein ligase TRIM21, of the RING-containing tripartite motif (TRIM) protein family, is a major autoantigen in autoimmune diseases and a modulator of innate immune signaling. Together with ubiquitin-conjugating enzyme E2 E1 (UBE2E1), TRIM21 acts both as an E3 ligase and as a substrate in autoubiquitination. We here report a 2.82-angstrom crystal structure of the human TRIM21 RING domain in complex with the human E2-conjugating UBE2E1 enzyme, in which a ubiquitin-targeted TRIM21 substrate lysine was captured in the UBE2E1 active site. The structure revealed that the direction of lysine entry is similar to that described for human proliferating cell nuclear antigen (PCNA), a small ubiquitin-like modifier (SUMO)-targeted substrate, and thus differs from the canonical SUMO-targeted substrate entry. In agreement, we found that critical UBE2E1 residues involved in the capture of the TRIM21 substrate lysine are conserved in ubiquitin-conjugating E2s, whereas residues critical for SUMOylation are not conserved. We noted that coordination of the acceptor lysine leads to remodeling of amino acid side-chain interactions between the UBE2E1 active site and the E2-E3 direct interface, including the so-called linchpin residue conserved in RING E3s and required for ubiquitination. The findings of our work support the notion that substrate lysine activation of an E2-E3-connecting allosteric path may trigger catalytic activity and contribute to the understanding of specific lysine targeting by ubiquitin-conjugating E2s.
  •  
3.
  • Andersen, T. C. B., et al. (författare)
  • The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell?specific adapter protein
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 294:42, s. 15480-15494
  • Tidskriftsartikel (refereegranskat)abstract
    • T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2?inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239?274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239?256 and aa 257?274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242?268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
  •  
4.
  • Arnling Bååth, Jenny, 1987, et al. (författare)
  • Structure-function analyses reveal that a glucuronoyl esterase from Teredinibacter turnerae interacts with carbohydrates and aromatic compounds
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:16, s. 6635-6644
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages found between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact with their natural substrates are sparse, calling for thorough structurefunction studies. Presented here is the structure and biochemical characterization of a GE, TtCE15A, from the bacterium Teredinibacter turnerae, a symbiont of wood-boring shipworms. To gain deeper insight into enzyme-substrate interactions, inhibition studies were performed with both the WT TtCE15A and variants in which we, by using site-directed mutagenesis, substituted residues suggested to have key roles in binding to or interacting with the aromatic and carbohydrate structures of its uronic acid ester substrates. Our results support the hypothesis that two aromatic residues (Phe-174 and Trp- 376), conserved in bacterial GEs, interact with aromatic and carbohydrate structures of these substrates in the enzyme active site, respectively. The solved crystal structure of TtCE15A revealed features previously not observed in either fungal or bacterial GEs, with a large inserted N-terminal region neighboring the active site and a differently positioned residue of the catalytic triad. The findings highlight key interactions between GEs and complex lignin-carbohydrate ester substrates and advance our understanding of the substrate specificities of these enzymes in biomass conversion.
  •  
5.
  • Awad, W., et al. (författare)
  • Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:38, s. 22991-23008
  • Tidskriftsartikel (refereegranskat)abstract
    • Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the Cterminus and also the topology of Gpc1 with respect to the membrane. The Cterminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation.
  •  
6.
  • Bagdonaite, I., et al. (författare)
  • Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 291:23, s. 12014-12028
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
  •  
7.
  • Bart, Genevieve, et al. (författare)
  • Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo-and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2, and HAS3
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:18, s. 11479-11490
  • Tidskriftsartikel (refereegranskat)abstract
    • In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1-3 (HAS1-3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647-23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis.
  •  
8.
  • Bergqvist, Niclas, et al. (författare)
  • A systems biology analysis connects insulin receptor signaling with glucose transporter translocation in rat adipocytes
  • 2017
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 1083-351X .- 0021-9258. ; 292:27, s. 11206-11217
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes is characterized by insulin resistance, which arises from malfunctions in the intracellular insulin signaling network. Knowledge of the insulin signaling network is fragmented, and because of the complexity of this network, little consensus has emerged for the structure and importance of the different branches of the network. To help overcome this complexity, systems biology mathematical models have been generated for predicting both the activation of the insulin receptor (IR) and the redistribution of glucose transporter 4 (GLUT4) to the plasma membrane. Although the insulin signal transduction between IR and GLUT4 has been thoroughly studied with modeling and time-resolved data in human cells, comparable analyses in cells from commonly used model organisms such as rats and mice are lacking. Here, we combined existing data and models for rat adipocytes with new data collected for the signaling network between IR and GLUT4 to create a model also for their interconnections. To describe all data (>140 data points), the model needed three distinct pathways from IR to GLUT4: (i) via protein kinase B (PKB) and Akt substrate of 160 kDa (AS160), (ii) via an AS160-independent pathway from PKB, and (iii) via an additional pathway from IR, e.g. affecting the membrane constitution. The developed combined model could describe data not used for training the model and was used to generate predictions of the relative contributions of the pathways from IR to translocation of GLUT4. The combined model provides a systems-level understanding of insulin signaling in rat adipocytes, which, when combined with corresponding models for human adipocytes, may contribute to model-based drug development for diabetes.
  •  
9.
  • Boban, Mirta, et al. (författare)
  • Atypical Ubiquitylation in Yeast Targets Lysine-less Asi2 for Proteasomal Degradation
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:4, s. 2489-2495
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins are typically targeted for proteasomal degradation by the attachment of a polyubiquitin chain to epsilon-amino groups of lysine residues. Non-lysine ubiquitylation of proteasomal substrates has been considered an atypical and rare event limited to complex eukaryotes. Here we report that a fully functional lysine-less mutant of an inner nuclear membrane protein in yeast, Asi2, is polyubiquitylated and targeted for proteasomal degradation. Efficient degradation of lysine-free Asi2 requires E3-ligase Doa10 and E2 enzymes Ubc6 and Ubc7, components of the endoplasmic reticulum-associated degradation pathway. Together, our data suggest that non-lysine ubiquitylation may be more prevalent than currently considered.
  •  
10.
  • Bocedi, Alessio, et al. (författare)
  • Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 291:52, s. 26739-26749
  • Tidskriftsartikel (refereegranskat)abstract
    • Negative cooperativity in enzyme reactions, in which the first event makes subsequent events less favorable, is sometimes well understood at the molecular level, but its physiological role has often been obscure. Negative cooperativity occurs in human glutathione transferase (GST) GSTP1-1 when it binds and neutralizes a toxic nitric oxide adduct, the dinitrosyl-diglutathionyl iron complex (DNDGIC). However, the generality of this behavior across the divergent GST family and its evolutionary significance were unclear. To investigate, we studied 16 different GSTs, revealing that negative cooperativity is present only in more recently evolved GSTs, indicating evolutionary drift in this direction. In some variants, Hill coefficients were close to 0.5, the highest degree of negative cooperativity commonly observed (although smaller values of n(H) are theoretically possible). As DNDGIC is also a strong inhibitor of GSTs, we suggest negative cooperativity might have evolved to maintain a residual conjugating activity of GST against toxins even in the presence of high DNDGIC concentrations. Interestingly, two human isoenzymes that play a special protective role, safeguarding DNA from DNDGIC, display a classical half-of-the-sites interaction. Analysis of GST structures identified elements that could play a role in negative cooperativity in GSTs. Beside the well known lock-and-key and clasp motifs, other alternative structural interactions between subunits may be proposed for a few GSTs. Taken together, our findings suggest the evolution of self-preservation of enzyme function as a novel facility emerging from negative cooperativity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 144
Typ av publikation
tidskriftsartikel (142)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (143)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sandgren, Mats (6)
Li, Jin-Ping (4)
Hofer, Anders (4)
Sanyal, Suparna (3)
Högbom, Martin (3)
Hansson, Henrik (3)
visa fler...
von Heijne, Gunnar (3)
Lara, Patricia (3)
Nilsson, IngMarie (3)
Sjöberg, Britt-Marie (3)
Kalamajski, Sebastia ... (3)
Näsvall, Joakim (2)
Mani, Katrin (2)
Mörgelin, Matthias (2)
Ellervik, Ulf (2)
Johansson, Jan (2)
Kjellén, Lena (2)
Branca, Rui M M (2)
Heldin, Carl-Henrik (2)
Vlodavsky, Israel (2)
Lundin, Daniel, 1965 ... (2)
Rubin, Kristofer (2)
Larsson, Mikael (2)
Teneberg, Susann, 19 ... (2)
Lundin, Daniel (2)
Wolf-Watz, Hans (2)
Hauryliuk, Vasili (2)
Zhang, Xiao (2)
Malmsten, Martin (2)
Akke, Mikael (2)
Eliasson, Lena (2)
Cardenas, Eduardo I. (2)
Ljungdahl, Per O. (2)
Hansson, Gunnar C., ... (2)
Lo Leggio, Leila (2)
Andersson, Inger (2)
Sahlin, Margareta (2)
Büttner, Sabrina (2)
Selmer, Maria (2)
Söderhäll, Irene (2)
Söderhäll, Kenneth (2)
Moustakas, Aristidis (2)
Mazurkewich, Scott, ... (2)
Larsbrink, Johan, 19 ... (2)
Carmona-Gutierrez, D ... (2)
Eisenberg, Tobias (2)
Dierker, Tabea (2)
Nasir, Waqas (2)
Griese, Julia J. (2)
Hassinen, Antti (2)
visa färre...
Lärosäte
Uppsala universitet (41)
Umeå universitet (26)
Lunds universitet (25)
Stockholms universitet (23)
Göteborgs universitet (18)
Sveriges Lantbruksuniversitet (14)
visa fler...
Karolinska Institutet (12)
Linköpings universitet (10)
Chalmers tekniska högskola (8)
Kungliga Tekniska Högskolan (6)
Linnéuniversitetet (5)
Örebro universitet (2)
Högskolan i Skövde (1)
RISE (1)
visa färre...
Språk
Engelska (144)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (102)
Medicin och hälsovetenskap (58)
Teknik (6)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy