SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 9967 srt2:(2005-2009)"

Sökning: L773:0021 9967 > (2005-2009)

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beramendi, Ana, et al. (författare)
  • Neuromuscular junction in abdominal muscles of Drosophila melanogaster during adulthood and aging
  • 2007
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 501:4, s. 498-508
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuromuscular junction (NMJ) of Drosophila melanogaster has been established as a productive model for the study of synaptogenesis, synaptic plasticity, vesicle recycling, and other synaptic functions in embryos and larvae. It also has potential for the study of long-term plasticity during adult life and degenerative processes associated with aging. Here we provide a detailed description of the morphology and ultrastructure of the NMJ on abdominal dorsal longitudinal muscles throughout adult life from eclosion to senescence. In contrast to the case in the larva, the predominant type of terminals in these muscles in the adult fly consists of only two or three branches with tightly packed synaptic boutons. We observed qualitative and quantitative changes as mean bouton size increased gradually during adulthood, and the largest boutons were present in the old fly. The length of nerve branches first increased and thereafter decreased gradually during most of adult life. Branch diameter also decreased progressively, but branch number did not change. The subsynaptic reticulum became progressively thinner, and “naked” boutons were found in old flies. Ultrastructural traits gave indications of an age-associated increment in autophagy, larger synaptic vesicles, and impaired endocytosis. We propose that NMJ aging in the fly correlates with impaired endocytosis and membrane dynamics. This view finds a functional correlate in flies carrying a temperature-sensitive mutation in shibire that reversible blocks endocytosis; age significantly reduces the time required for complete paralysis and increases the time of recovery, thus confirming the age-dependent alteration in vesicle dynamics.
  •  
2.
  •  
3.
  • Berglöf, Elisabet, et al. (författare)
  • Beneficial effects of antioxidant-enriched diet for tyrosine hydroxylase-positive neurons in ventral mesencephalic tissue in oculo grafts
  • 2009
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 515:1, s. 72-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Supplementation of antioxidants to the diet has been proved to be beneficial in aging and after brain injury. Furthermore, it has been postulated that the locus coeruleus promotes survival of dopamine neurons. Thus, this study was performed to elucidate the effects of a blueberry-enriched diet on fetal ventral mesencephalic tissue in the presence or absence of locus coeruleus utilizing the in oculo grafting method. Sprague-Dawley rats were given control diet or diet supplemented with 2% blueberries, and solid tissue pieces of fetal locus coeruleus and ventral mesencephalon were implanted as single and co-grafts. The results revealed that the presence of locus coeruleus tissue or the addition of blueberries enhanced the survival of ventral mesencephalic tyrosine hydroxylase (TH)-positive neurons, whereas no additive effects were observed for the two treatments. The density of TH-positive nerve fibers in ventral mesencephalic tissue was significantly elevated when it was attached to the locus coeruleus or by blueberry treatment, whereas the innervation of dopamine-beta-hydroxylase-positive nerve fibers was not altered. The presence of locus coeruleus tissue or bluberry supplementation reduced the number of Iba-1-positive microglia in the ventral mesencephalic portion of single and co-grafts, respectively, whereas almost no OX6 immunoreactivity was found. Furthermore, neither the attachment of ventral mesencephalic tissue nor the addition of blueberries improved the survival of TH-positive neurons in the locus coerulean grafts. To conclude, locus coeruleus and blueberries are beneficial for the survival of fetal ventral mesencephalic tissue, findings that could be useful when grafting tissue in Parkinson's disease.
  •  
4.
  • Berglöf, Elisabet, et al. (författare)
  • Glial influence on nerve fiber formation from rat ventral mesencephalic organotypic tissue cultures.
  • 2007
  • Ingår i: Journal of Comparative Neurology. - 0021-9967. ; 501:3, s. 431-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Rat fetal ventral mesencephalic organotypic cultures have demonstrated two morphologically different dopamine nerve fiber growth patterns, in which the initial nerve fibers are formed in the absence of astrocytes and the second wave is guided by astrocytes. In this study, the presence of subpopulations of dopamine neurons, other neuronal populations, and glial cells was determined. We used "roller-drum" organotypic cultures, and the results revealed that beta-tubulin-positive/tyrosine hydroxylase (TH)-negative nerve fibers were present as early as 1 day in vitro (DIV). A similar growth pattern produced by TH-positive neurons was present from 2 DIV. These neurites grew to reach distances over 4 mm and over time appeared to be degenerating. Thin, vimentin-positive processes were found among these nerve fibers. As the first growth was retracted, a second outgrowth was initiated and formed on migrating astrocytes. TH- and aldehyde dehydrogenase-1 (ALDH1)-positive nerve fibers formed both the nonglia-associated and the glia-associated outgrowth. In cultures with membrane inserts, only the glia-associated outgrowth was found. Vimentin-positive cells preceded migration of NG2-positive oligodendrocytes and Iba-1-positive microglia. Oligodendrocytes appeared not to be involved in guiding neuritic growth, but microglia was absent over areas dense with TH-positive neurons. In conclusion, in "roller-drum" cultures, nerve fibers are generally formed in two sequences. The early-formed nerve fibers grow in the presence of thin, vimentin-positive processes. The second nerve fiber outgrowth is formed on astroglia, with no correlation to the presence of oligodendrocytes or microglia. ALDH1-positive nerve fibers, presumably derived from A9 dopamine neurons, participate in formation of both sequences of outgrowth.
  •  
5.
  •  
6.
  • Chandrasekar, Gayathri, et al. (författare)
  • Distribution of corticotropin-releasing hormone in the developing zebrafish brain
  • 2007
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 505:4, s. 337-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Corticotropin-releasing hormone (CRH) plays a central role in the physiological regulation of the hypothalamus-pituitary-adrenal/interrenal axis mediating endocrine, behavioral, autonomic, and immune responses to stress. Despite the wealth of knowledge about the physiological roles of CRH, the genetic mechanisms by which CRH neurons arise during development are poorly understood. As a first step toward analyzing the molecular and genetic pathways involved in CRH lineage specification, we describe the developmental distribution of CRH neurons in the embryonic zebrafish, a model organism for functional genomics and developmental biology. We searched available zebrafish expressed sequence tag (EST) databases for CRH-like sequences and identified one EST that contained the complete zebrafish CRH open reading frame (ORF). The CRH precursor sequence contained a signal peptide, the CRH peptide, and a cryptic peptide with a conserved sequence motif. RT-PCR analysis showed crh expression in a wide range of adult tissues as well as during embryonic and larval stages. By whole-mount in situ hybridization histochemistry, discrete crh-expressing cell clusters were found in different parts of the embryonic zebrafish brain, including telencephalon, preoptic region, hypothalamus, posterior tuberculum, thalamus, epiphysis, midbrain tegmentum, and rostral hindbrain and in the neural retina. The localization of crh mRNA within the preoptic region is consistent with the central role of CRH in the teleost stress response through activation of the hypothalamic-pituitary-interrenal axis. The widespread distribution of CRH-synthesizing cells outside the preoptic region suggests additional functions of CRH in the embryonic zebrafish brain.
  •  
7.
  • Christensson, Maria, et al. (författare)
  • Time course of cerebellar morphological development in postnatal ferrets: Ontogenetic and comparative perspectives.
  • 2007
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 501:6, s. 916-930
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide the first systematic description of the morphological ontogenesis of the ferret cerebellum and compare its relative time-course to that of the rat cerebellum. Overall cerebellar size, foliation, and thickness of cortical layers were quantified and Purkinje cell morphology was characterized at 24 timepoints in ferrets from postnatal day (P)1 to P63. The ferret cerebellum was substantially larger than that of the rat and had a much longer developmental period. In ferrets, Purkinje cells were dispersed into a monolayer by P9, the formation of folia declined abruptly around P20, and the external granular layer peaked in thickness around P22 and disappeared by P56. Timepoints of corresponding relative developmental maturity of the quantified architectural features of rat and ferret cerebella were determined and their relationship was analyzed by linear regression. The time-conversion equation derived, describing the relationship between cerebellar morphogenesis in the two species, had a determination coefficient (r2) of 0.95. Conspicuously, the equation predicted with high accuracy the timing of structural changes in individual Purkinje cells in the ferret cerebellum. The conversion equation should be useful for precise quantitative translation of data between studies of ferret and rat cerebellum and for comparisons between development of motor and sensory structures and functions in ferrets. The degree of similarity in the time-courses of cerebellar development in two distantly related mammals makes explicit in quantitative terms how remarkably conserved the cerebellum is in phylogenesis. Therefore, the methodology should be applicable to precise quantitative conversions of cerebellar developmental time-courses also between other species.
  •  
8.
  • Dircksen, Heinrich, 1954-, et al. (författare)
  • Ion transport peptide splice forms in central and peripheral neurons throughout postembryogenesis of Drosophila melanogaster.
  • 2008
  • Ingår i: The Journal of comparative neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 509:1, s. 23-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion transport peptides (ITPs) belong to a large arthropod neuropeptide family including crustacean hyperglycaemic hormones and are antidiuretic hormones in locusts. Because long and short ITP isoforms are generated by alternative splicing from a single gene in locusts and moths, we investigated whether similarly spliced gene products occur in the nervous system of Drosophila melanogaster throughout postembryogenesis. The itp gene CG13586 was reanalyzed, and we found three instead of the two previously annotated alternatively spliced mRNAs. These give rise to three different neuropeptides, two long C-terminally carboxylated isoforms (DrmITPL1 and DrmITPL2, both 87 amino acids) and one short amidated DrmITP (73 amino acids), which were partially identified biochemically. Immunocytochemistry and in situ hybridization reveal nine larval and 14 adult identified neurons: four pars lateralis neurosecretory neurons, three hindgut-innervating neurons in abdominal ganglia, and a stage-specific number of interneurons and peripheral bipolar neurons. The neurosecretory neurons persist throughout postembryogenesis, form release sites in corpora cardiaca, and invade corpora allata. One type of ITP-expressing interneuron exists only in the larval and prepupal subesophageal ganglia, whereas three types of interneurons in the adult brain arise in late pupae and invade circumscribed neuropils in superior median and lateral brain areas. One peripheral bipolar and putative sensory neuron type occurs in the larval, pupal, and adult preterminal abdominal segments. Although the neurosecretory neurons may release DrmITP and DrmITPL2 into the haemolymph, possible physiological roles of the hindgut-innervating and peripheral neurons as well as the interneurons are yet to be identified.
  •  
9.
  •  
10.
  • Enell, Lina, et al. (författare)
  • gamma-Aminobutyric acid (GABA) signaling components in Drosophila : immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter.
  • 2007
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 505:1, s. 18-31
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in insects and is widely distributed in the central nervous system (CNS). GABA acts on ion channel receptors (GABAAR) for fast inhibitory transmission and on G-protein-coupled ones (GABABR) for slow and modulatory action. We used immunocytochemistry to map GABABR sites in the Drosophila CNS and compared the distribution with that of the GABAAR subunit RDL. To identify GABAergic synapses, we raised an antiserum to the vesicular GABA transporter (vGAT). For general GABA distribution, we utilized an antiserum to glutamic acid decarboxylase (GAD1) and a gad1-GAL4 to drive green fluorescent protein. GABABR-immunoreactive (IR) punctates were seen in specific patterns in all major neuropils of the brain. Most abundant labeling was seen in the mushroom body calyces, ellipsoid body, optic lobe neuropils, and antennal lobes. The RDL distribution is very similar to that of GABABR-IR punctates. However, the mushroom body lobes displayed RDL-IR but not GABABR-IR material, and there were subtle differences in other areas. The vGAT antiserum labeled punctates in the same areas as the GABABR and appeared to display presynaptic sites of GABAergic neurons. Various GAL4 drivers were used to analyze the relation between GABABR distribution and identified neurons in adults and larvae. Our findings suggest that slow GABA transmission is very widespread in the Drosophila CNS and that fast RDL-mediated transmission generally occurs at the same sites. J. Comp. Neurol. 505:18–31, 2007.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy