SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0935 9648 OR L773:1521 4095 srt2:(2020-2021)"

Sökning: L773:0935 9648 OR L773:1521 4095 > (2020-2021)

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anusuyadevi, Prasaanth Ravi, et al. (författare)
  • Photoresponsive and Polarization-Sensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:36, s. 2101519-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanocrystals (CNCs) possess the ability to form helical periodic structures that generate structural colors. Due to the helicity, such self-assembled cellulose structures preferentially reflect left-handed circularly polarized light of certain colors, while they remain transparent to right-handed circularly polarized light. This study shows that combination with a liquid crystal enables modulation of the optical response to obtain light reflection of both handedness but with reversed spectral profiles. As a result, the nanophotonic systems provide vibrant structural colors that are tunable via the incident light polarization. The results are attributed to the liquid crystal aligning on the CNC/glucose film, to form a birefringent layer that twists the incident light polarization before interaction with the chiral cellulose nanocomposite. Using a photoresponsive liquid crystal, this effect can further be turned off by exposure to UV light, which switches the nematic liquid crystal into a nonbirefringent isotropic phase. The study highlights the potential of hybrid cellulose systems to create self-assembled yet advanced photoresponsive and polarization-tunable nanophotonics.
  •  
2.
  • Apostolopoulou-Kalkavoura, Varvara, 1988-, et al. (författare)
  • Thermally Insulating Nanocellulose-Based Materials
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:28
  • Forskningsöversikt (refereegranskat)abstract
    • Thermally insulating materials based on renewable nanomaterials such as nanocellulose could reduce the energy consumption and the environmental impact of the building sector. Recent reports of superinsulating cellulose nanomaterial (CNM)-based aerogels and foams with significantly better heat transport properties than the commercially dominating materials, such as expanded polystyrene, polyurethane foams, and glass wool, have resulted in a rapidly increasing research activity. Herein, the fundamental basis of thermal conductivity of porous materials is described, and the anisotropic heat transfer properties of CNMs and films with aligned CNMs and the processing and structure of novel CNM-based aerogels and foams with low thermal conductivities are presented and discussed. The extraordinarily low thermal conductivity of anisotropic porous architectures and multicomponent approaches are highlighted and related to the contributions of the Knudsen effect and phonon scattering.
  •  
3.
  • Bing, Zhao, 1990, et al. (författare)
  • Unconventional Charge–Spin Conversion in Weyl-Semimetal WTe2
  • 2020
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 32:38
  • Tidskriftsartikel (refereegranskat)abstract
    • An outstanding feature of topological quantum materials is their novel spin topology in the electronic band structures with an expected large charge-to-spin conversion efficiency. Here, a charge-current-induced spin polarization in the type-II Weyl semimetal candidate WTe2 and efficient spin injection and detection in a graphene channel up to room temperature are reported. Contrary to the conventional spin Hall and Rashba–Edelstein effects, the measurements indicate an unconventional charge-to-spin conversion in WTe2, which is primarily forbidden by the crystal symmetry of the system. Such a large spin polarization can be possible in WTe2 due to a reduced crystal symmetry combined with its large spin Berry curvature, spin–orbit interaction with a novel spin-texture of the Fermi states. A robust and practical method is demonstrated for electrical creation and detection of such a spin polarization using both charge-to-spin conversion and its inverse phenomenon and utilized it for efficient spin injection and detection in the graphene channel up to room temperature. These findings open opportunities for utilizing topological Weyl materials as nonmagnetic spin sources in all-electrical van der Waals spintronic circuits and for low-power and high-performance nonvolatile spintronic technologies.
  •  
4.
  • Chae, Soosang, et al. (författare)
  • Stretchable Thin Film Mechanical-Strain-Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier
  • 2021
  • Ingår i: Advanced Materials. - : Wiley-Blackwell. - 0935-9648 .- 1521-4095. ; 33:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human-machine interfaces, and Internet of Things.
  •  
5.
  •  
6.
  • Chen, Desui, et al. (författare)
  • Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance
  • 2020
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum-dot light-emitting diodes (QLEDs) promise a new generation of high-performance, large-area, and cost-effective electroluminescent devices for both display and solid-state lighting technologies. However, a positive ageing process is generally required to improve device performance for state-of-the-art QLEDs. Here, it is revealed that the in situ reactions induced by organic acids in the commonly used encapsulation acrylic resin lead to positive ageing and, most importantly, the progression of in situ reactions inevitably results in negative ageing, i.e., deterioration of device performance after long-term shelf storage. In-depth mechanism studies focusing on the correlations between the in situ chemical reactions and the shelf-ageing behaviors of QLEDs inspire the design of an electron-transporting bilayer, which delivers both improved electrical conductivity and suppressed interfacial exciton quenching. This material innovation enables red QLEDs exhibiting neglectable changes of external quantum efficiency (>20.0%) and ultralong operational lifetime (T-95: 5500 h at 1000 nits) after storage for 180 days. This work provides design principles for oxide electron-transporting layers to realize shelf-stable and high-operational-performance QLEDs, representing a new starting point for both fundamental studies and practical applications.
  •  
7.
  • Chen, Shangzhi, et al. (författare)
  • Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces.
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.
  •  
8.
  • Cui, Yong, et al. (författare)
  • Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimizing the molecular structures of organic photovoltaic (OPV) materials is one of the most effective methods to boost power conversion efficiencies (PCEs). For an excellent molecular system with a certain conjugated skeleton, fine tuning the alky chains is of considerable significance to fully explore its photovoltaic potential. In this work, the optimization of alkyl chains is performed on a chlorinated nonfullerene acceptor (NFA) named BTP-4Cl-BO (a Y6 derivative) and very impressive photovoltaic parameters in OPV cells are obtained. To get more ordered intermolecular packing, the n-undecyl is shortened at the edge of BTP-eC11 to n-nonyl and n-heptyl. As a result, the NFAs of BTP-eC9 and BTP-eC7 are synthesized. The BTP-eC7 shows relatively poor solubility and thus limits its application in device fabrication. Fortunately, the BTP-eC9 possesses good solubility and, at the same time, enhanced electron transport property than BTP-eC11. Significantly, due to the simultaneously enhanced short-circuit current density and fill factor, the BTP-eC9-based single-junction OPV cells record a maximum PCE of 17.8% and get a certified value of 17.3%. These results demonstrate that minimizing the alkyl chains to get suitable solubility and enhanced intermolecular packing has a great potential in further improving its photovoltaic performance.
  •  
9.
  • Dahlqvist, Martin, et al. (författare)
  • Out-Of-Plane Ordered Laminate Borides and Their 2D Ti-Based Derivative from Chemical Exfoliation
  • 2021
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 33:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploratory theoretical predictions in uncharted structural and compositional space are integral to materials discoveries. Inspired by M5SiB2 (T2) phases, the finding of a family of laminated quaternary metal borides, M M-4 SiB2, with out-of-plane chemical order is reported here. 11 chemically ordered phases as well as 40 solid solutions, introducing four elements previously not observed in these borides are predicted. The predictions are experimentally verified for Ti4MoSiB2, establishing Ti as part of the T2 boride compositional space. Chemical exfoliation of Ti4MoSiB2 and select removal of Si and MoB2 sub-layers is validated by derivation of a 2D material, TiOxCly, of high yield and in the form of delaminated sheets. These sheets have an experimentally determined direct band gap of approximate to 4.1 eV, and display characteristics suitable for supercapacitor applications. The results take the concept of chemical exfoliation beyond currently available 2D materials, and expands the envelope of 3D and 2D candidates, and their applications.
  •  
10.
  • De Santis, Martina M, et al. (författare)
  • Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 1521-4095 .- 0935-9648. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue-specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro-angiogenic and support recipient-derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof-of-principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51
Typ av publikation
tidskriftsartikel (45)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (51)
Författare/redaktör
Grommet, Angela Beth ... (2)
Fabiano, Simone (2)
Berggren, Magnus (2)
Liu, Feng (2)
Dahlin, Andreas, 198 ... (2)
Ågren, Hans (2)
visa fler...
Chen, C. (1)
Yuan, J. (1)
Wang, Y. (1)
Fahlman, Mats (1)
Wolf, Martin (1)
Ding, F. (1)
Shi, Yijun (1)
Chen, Z. (1)
Lu, Jun (1)
Hultman, Lars (1)
Evans, J. (1)
Zuo, Guangzheng (1)
Gladisch, Johannes (1)
Moser, Maximilian (1)
McCulloch, Iain (1)
Stavrinidou, Eleni (1)
Engquist, Isak (1)
Liu, Xianjie (1)
Crispin, Xavier (1)
Zozoulenko, Igor (1)
Ma, W. (1)
Primetzhofer, Daniel (1)
Tang, Z. (1)
Singh, Ranbir (1)
Yue, Q. (1)
Palasingh, Chonnipa, ... (1)
Zhou, X. (1)
Tägil, Magnus (1)
Johansson, Annika (1)
Palisaitis, Justinas (1)
Schubert, Mathias (1)
Uhlmann, Petra (1)
Müller, Christian, 1 ... (1)
Hogberg, B (1)
Persson, Ingemar (1)
Zhang, Fengling, 196 ... (1)
Zhang, Fengling (1)
Bao, Qinye (1)
Swärd, Karl (1)
Bergström, Lennart (1)
Malic, Ermin, 1980 (1)
Zhou, K. (1)
Mohlin, Sofie (1)
Isaksson, Hanna (1)
visa färre...
Lärosäte
Linköpings universitet (18)
Kungliga Tekniska Högskolan (9)
Uppsala universitet (8)
Chalmers tekniska högskola (7)
Karolinska Institutet (4)
Lunds universitet (3)
visa fler...
RISE (3)
Stockholms universitet (2)
Mittuniversitetet (2)
Luleå tekniska universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (51)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Teknik (19)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy