SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1065 9471 OR L773:1097 0193 srt2:(2020-2021)"

Sökning: L773:1065 9471 OR L773:1097 0193 > (2020-2021)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abe, C., et al. (författare)
  • Cross-sex shifts in two brain imaging phenotypes and their relation to polygenic scores for same-sex sexual behavior: A study of 18,645 individuals from the UK Biobank
  • 2021
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 42:7, s. 2292-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and hormonal factors have been suggested to influence human sexual orientation. Previous studied proposed brain differences related to sexual orientation and that these follow cross-sex shifted patterns. However, the neurobiological correlates of sexual orientation and how genetic factors relate to brain structural variation remains largely unexplored. Using the largest neuroimaging-genetics dataset available on same-sex sexual behavior (SSB) (n = 18,645), we employed a data-driven multivariate classification algorithm (PLS) on magnetic resonance imaging data from two imaging modalities to extract brain covariance patterns related to sex. Through analyses of latent variables, we tested for SSB-related cross-sex shifts in such patterns. Using genotype data, polygenic scores reflecting the genetic predisposition for SSB were computed and tested for associations with neuroimaging outcomes. Patterns important for classifying between males and females were less pronounced in non-heterosexuals. Predominantly in non-heterosexual females, multivariate brain patterns as represented by latent variables were shifted toward the opposite sex. Complementary univariate analyses revealed region specific SSB-related differences in both males and females. Polygenic scores for SSB were associated with volume of lateral occipital and temporo-occipital cortices. The present large-scale study demonstrates multivariate neuroanatomical correlates of SSB, and tentatively suggests that genetic factors related to SSB may contribute to structural variation in certain brain structures. These findings support a neurobiological basis to the differences in human sexuality.
  •  
2.
  •  
3.
  • de Almeida Martins, João P., et al. (författare)
  • Computing and visualising intra-voxel orientation-specific relaxation–diffusion features in the human brain
  • 2021
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 42:2, s. 310-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation–diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo-times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation–diffusion distributions where contributions from different sub-voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways.
  •  
4.
  •  
5.
  • Falgas, N., et al. (författare)
  • Contribution of CSF biomarkers to early-onset Alzheimer's disease and frontotemporal dementia neuroimaging signatures
  • 2020
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 41:8, s. 2004-2013
  • Tidskriftsartikel (refereegranskat)abstract
    • Prior studies have described distinct patterns of brain gray matter and white matter alterations in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD), as well as differences in their cerebrospinal fluid (CSF) biomarkers profiles. We aim to investigate the relationship between early‐onset AD (EOAD) and FTLD structural alterations and CSF biomarker levels. We included 138 subjects (64 EOAD, 26 FTLD, and 48 controls), all of them with a 3T MRI brain scan and CSF biomarkers available (the 42 amino acid‐long form of the amyloid‐beta protein [Aβ42], total‐tau protein [T‐tau], neurofilament light chain [NfL], neurogranin [Ng], and 14‐3‐3 levels). We used FreeSurfer and FSL to obtain cortical thickness (CTh) and fraction anisotropy (FA) maps. We studied group differences in CTh and FA and described the “AD signature” and “FTLD signature.” We tested multiple regression models to find which CSF‐biomarkers better explained each disease neuroimaging signature. CTh and FA maps corresponding to the AD and FTLD signatures were in accordance with previous literature. Multiple regression analyses showed that the biomarkers that better explained CTh values within the AD signature were Aβ and 14‐3‐3; whereas NfL and 14‐3‐3 levels explained CTh values within the FTLD signature. Similarly, NfL levels explained FA values in the FTLD signature. Ng levels were not predictive in any of the models. Biochemical markers contribute differently to structural (CTh and FA) changes typical of AD and FTLD.
  •  
6.
  • Gurholt, Tiril P., et al. (författare)
  • Intracranial and subcortical volumes in adolescents with early‐onset psychosis : A multisite mega‐analysis from the ENIGMA consortium
  • 2020
  • Ingår i: Human Brain Mapping. - Stockholm : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 373-384
  • Tidskriftsartikel (refereegranskat)abstract
    • Early-onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early-onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early-onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early-onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed-effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen's d = −0.39) and hippocampal (d = −0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early-onset schizophrenia (d = −0.34) and affective psychosis (d = −0.42), and early-onset schizophrenia showed lower hippocampal (d = −0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = −0.42). The findings demonstrate a similar pattern of brain alterations in early-onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early-onset psychosis.
  •  
7.
  • Haugg, Amelie, et al. (författare)
  • Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?
  • 2020
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 41:14, s. 3839-3854
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
  •  
8.
  •  
9.
  • Leutritz, Tobias, et al. (författare)
  • Multi-parameter mapping (MPM) of relaxation (R1, R2*), proton density (PD) and magnetization transfer saturation (MT) at 3T: a multi-center dual-vendor reproducibility and repeatability study
  • 2020
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 41:15, s. 4232-4247
  • Tidskriftsartikel (refereegranskat)abstract
    • Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole‐brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI‐toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter‐site comparability, the intra‐site (i.e., scan‐rescan experiment) coefficient of variation (CoV), inter‐site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra‐ and inter‐site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra‐site CoV (16%) was observed in R2* maps. The inter‐site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.
  •  
10.
  • Novén, Mikael, et al. (författare)
  • Cortical and white matter correlates of language-learning aptitudes
  • 2021
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 42:15, s. 5037-5050
  • Tidskriftsartikel (refereegranskat)abstract
    • People learn new languages with varying degrees of success but what are the neuroanatomical correlates of the difference in language-learning aptitude? In this study, we set out to investigate how differences in cortical morphology and white matter microstructure correlate with aptitudes for vocabulary learning, phonetic memory, and grammatical inferencing as measured by the first-language neutral LLAMA test battery. We used ultra-high field (7T) magnetic resonance imaging to estimate the cortical thickness and surface area from sub-millimeter resolved image volumes. Further, diffusion kurtosis imaging was used to map diffusion properties related to the tissue microstructure from known language-related white matter tracts. We found a correlation between cortical surface area in the left posterior-inferior precuneus and vocabulary learning aptitude, possibly indicating a greater predisposition for storing word-figure associations. Moreover, we report negative correlations between scores for phonetic memory and axial kurtosis in left arcuate fasciculus as well as mean kurtosis, axial kurtosis, and radial kurtosis of the left superior longitudinal fasciculus III, which are tracts connecting cortical areas important for phonological working memory.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy