SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1553 7404 ;srt2:(2020-2021)"

Sökning: L773:1553 7404 > (2020-2021)

  • Resultat 21-30 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Silva, Willian T. A. F., 1987-, et al. (författare)
  • Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.Author summarySmall RNAs (sRNA) are produced by a wide range of organisms, from bacteria to plants and animals. These molecules are involved in the response to environmental stress (e.g., temperature, pathogens) and can be transmitted across generations. We developed a model to explore the dynamics of sRNA production (phenotypic plasticity) and inheritance in a fluctuating environment. We tested whether different sRNA mutants can invade a population where individuals produce sRNA at a constant optimal transcription rate. In our simulations, plastic amplification rates capable of responding to environmental conditions were favored and the transmission of sRNA transcripts or amplification agents across generations was particularly advantageous when parents and offspring faced similar environments. sRNA amplification alone is not favored except when optimal sRNA levels are not reached within a generation. Our model provides novel predictions for the molecular mechanisms of sRNA production and guidance for future empirical studies on mutations that impair the mechanisms of sRNA production and their fitness consequences.
  •  
22.
  • Stårsta, Magnus, et al. (författare)
  • RHS-elements function as type II toxin-antitoxin modules that regulate intra-macrophage replication of Salmonella Typhimurium
  • 2020
  • Ingår i: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • RHS elements are components of conserved toxin-delivery systems, wide-spread within the bacterial kingdom and some of the most positively selected genes known. However, very little is known about how Rhs toxins affect bacterial biology. Salmonella Typhimurium contains a full-length rhs gene and an adjacent orphan rhs gene, which lacks the conserved delivery part of the Rhs protein. Here we show that, in addition to the conventional delivery, Rhs toxin-antitoxin pairs encode for functional type-II toxin-antitoxin (TA) loci that regulate S. Typhimurium proliferation within macrophages. Mutant S. Typhimurium cells lacking both Rhs toxins proliferate 2-times better within macrophages, mainly because of an increased growth rate. Thus, in addition to providing strong positive selection for the rhs loci under conditions when there is little or no toxin delivery, internal expression of the toxin-antitoxin system regulates growth in the stressful environment found inside macrophages. 
  •  
23.
  • Tomic, Tajana Tesan, et al. (författare)
  • MYO5B mutations in pheochromocytoma/paraganglioma promote cancer progression
  • 2020
  • Ingår i: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of additional cancer-associated genes and secondary mutations driving the metastatic progression in pheochromocytoma and paraganglioma (PPGL) is important for subtyping, and may provide optimization of therapeutic regimens. We recently reported novel recurrent nonsynonymous mutations in the MYO5B gene in metastatic PPGL. Here, we explored the functional impact of these MYO5B mutations, and analyzed MYO5B expression in primary PPGL tumor cases in relation to mutation status. Immunohistochemistry and mRNA expression analysis in 30 PPGL tumors revealed an increased MYO5B expression in metastatic compared to non-metastatic cases. In addition, subcellular localization of MYO5B protein was altered from cytoplasmic to membranous in some metastatic tumors, and the strongest and most abnormal expression pattern was observed in a paraganglioma harboring a somatic MYO5B:p.G1611S mutation. In addition to five previously discovered MYO5B mutations, the present study of 30 PPGL (8 previous and 22 new samples) also revealed two, and hence recurrent, mutations in the gene paralog MYO5A. The three MYO5B missense mutations with the highest prediction scores (p.L587P, p.G1611S and p.R1641C) were selected and functionally validated using site directed mutagenesis and stable transfection into human neuroblastoma cells (SK-N-AS) and embryonic kidney cells (HEK293). In vitro analysis showed a significant increased proliferation rate in all three MYO5B mutated clones. The two somatically derived mutations, p.L587P and p.G1611S, were also found to increase the migration rate. Expression analysis of MYO5B mutants compared to wild type clones, demonstrated a significant enrichment of genes involved in migration, proliferation, cell adhesion, glucose metabolism, and cellular homeostasis. Our study validates the functional role of novel MYO5B mutations in proliferation and migration, and suggest the MYO5-pathway to be involved in the malignant progression in some PPGL tumors. © 2020 Tomic et al.
  •  
24.
  • Wang, Dandan, et al. (författare)
  • Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6(-/-)) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6(-/-) pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6(-/-) pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6(-/-) pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6(-/-) pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. Author summary The lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development.
  •  
25.
  • Woldemeskel, Selamawit Abi, et al. (författare)
  • The conserved transcriptional regulator CdnL is required for metabolic homeostasis and morphogenesis in Caulobacter
  • 2020
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLOS). - 1553-7390 .- 1553-7404. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial growth and division require regulated synthesis of the macromolecules used to expand and replicate components of the cell. Transcription of housekeeping genes required for metabolic homeostasis and cell proliferation is guided by the sigma factor sigma(70). The conserved CarD-like transcriptional regulator, CdnL, associates with promoter regions where sigma(70) localizes and stabilizes the open promoter complex. However, the contributions of CdnL to metabolic homeostasis and bacterial physiology are not well understood. Here, we show that Caulobacter crescentus cells lacking CdnL have severe morphological and growth defects. Specifically, Delta cdnL cells grow slowly in both rich and defined media, and are wider, more curved, and have shorter stalks than WT cells. These defects arise from transcriptional downregulation of most major classes of biosynthetic genes, leading to significant decreases in the levels of critical metabolites, including pyruvate, alpha-ketoglutarate, ATP, NAD(+), UDP-N-acetyl-glucosamine, lipid II, and purine and pyrimidine precursors. Notably, we find that Delta cdnL cells are glutamate auxotrophs, and Delta cdnL is synthetic lethal with other genetic perturbations that limit glutamate synthesis and lipid II production. Our findings implicate CdnL as a direct and indirect regulator of genes required for metabolic homeostasis that impacts morphogenesis through availability of lipid II and other metabolites. Author summary To grow and divide, bacteria must accumulate precursor molecules to support duplication and expansion of cellular materials. One mechanism by which bacteria do this is by regulating the expression of genes whose products are important for production of these molecules. How gene expression is maintained or altered to support synthesis of appropriate molecules to balance growth with nutrient availability is not fully understood. In this paper, we describe the role of a regulator of gene expression called CdnL in maintaining levels of molecules required for bacterial growth and reproduction. CdnL broadly impacts the levels of genes required for most biosynthetic processes. CdnL's broad impact on transcription has downstream consequences on growth rate, cell shape, and nutrient requirements for growth. We report that CdnL is particularly important for maintaining levels of the amino acid glutamate and the cell wall precursor lipid II, each of which is critical for supporting proper growth and cell morphology. Our results implicate CdnL as a broadly conserved regulator of metabolic homeostasis, growth, and cell shape in bacteria.
  •  
26.
  • Zan, Yanjun, et al. (författare)
  • Dynamic genetic architecture of yeast response to environmental perturbation shed light on origin of cryptic genetic variation
  • 2020
  • Ingår i: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryptic genetic variation could arise from, for example, Gene-by-Gene (G-by-G) or Gene-by-Environment (G-by-E) interactions. The underlying molecular mechanisms and how they influence allelic effects and the genetic variance of complex traits is largely unclear. Here, we empirically explored the role of environmentally influenced epistasis on the suppression and release of cryptic variation by reanalysing a dataset of 4,390 haploid yeast segregants phenotyped on 20 different media. The focus was on 130 epistatic loci, each contributing to segregant growth in at least one environment and that together explained most (69-100%) of the narrow sense heritability of growth in the individual environments. We revealed that the epistatic growth network reorganised upon environmental changes to alter the estimated marginal (additive) effects of the individual loci, how multi-locus interactions contributed to individual segregant growth and the level of expressed genetic variance in growth. The estimated additive effects varied most across environments for loci that were highly interactive network hubs in some environments but had few or no interactors in other environments, resulting in changes in total genetic variance across environments. This environmentally dependent epistasis was thus an important mechanism for the suppression and release of cryptic variation in this population. Our findings increase the understanding of the complex genetic mechanisms leading to cryptic variation in populations, providing a basis for future studies on the genetic maintenance of trait robustness and development of genetic models for studying and predicting selection responses for quantitative traits in breeding and evolution. Author summary Many biological traits are polygenic, with complex interplay between underlying genes and the surrounding environment. As a result, individuals with the same allele might have distinctive phenotypes due to differences in the polygenic background and/or the environment. Such differences often create additional genetic variation that is highly relevant to quantitative and evolutionary genetics by limiting our ability to accurately predict the phenotypes in medical or agricultural applications and providing opportunities for long term evolution. Previously, yeast growth regulating genes were found to be organised in large interacting networks. Here, we found that these networks were reorganised upon environmental changes, and that this resulted in altered effect sizes of individual genes, and how the whole network contributed to growth and the level of total genetic variance, providing a basis for future studies on the genetic maintenance of trait robustness and development of genetic models for studying and predicting selection responses for quantitative traits.
  •  
27.
  • Zandawala, Meet, et al. (författare)
  • A neuroendocrine pathway modulating osmotic stress in Drosophila
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor (CrzR) expression identified three pairs of Capa-expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila.
  •  
28.
  • Zhao, Haiyu, et al. (författare)
  • Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges.Author summaryThe integrity of genetic information is frequently challenged by environmental factors such as sunlight which induce mutations in DNA. Therefore, DNA damage repair mechanisms are ubiquitous and highly conserved. While significant progress has been made in understanding how these mechanisms recognize and repair DNA damage, how they adapt to long-term environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the function of DNA repair systems in extreme photic environments. We have previously shown that during evolution for millions of years in complete isolation from sunlight, the Somalian cavefish, Phreatichthys andruzzii has lost photoreactivation, a ubiquitous, light-dependent DNA repair system. This results in part from a loss of light, UV and ROS-induced gene transcription. Have other repair systems targeting UV-induced DNA damage been affected in cavefish? Here, we provide evidence that Nucleotide Excision Repair (NER) function is retained in cavefish and is upregulated upon sunlight exposure. Furthermore, we reveal complexity in the transcriptional and posttranscriptional mechanisms regulating the repair of UV-induced DNA damage.
  •  
29.
  •  
30.
  • Basu, Swaraj, et al. (författare)
  • Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing
  • 2020
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy. Author summary Deletions in the mitochondrial genome cause a wide variety of rare disorders, but are also linked to more common conditions such as neurodegeneration, diabetes type 2, and the normal ageing process. There is also a growing awareness that mtDNA duplications, which are also relevant for human disease, may be more common than previously thought. Despite their clinical importance, our current knowledge about the abundance, characteristics and diversity of mtDNA deletions and duplications is fragmented, and based to large extent on a limited view provided by traditional low-throughput analyses. Here, we describe a bioinformatics method, MitoSAlt, that can accurately map and classify mtDNA deletions and duplications using high-throughput sequencing. Application of this methodology to mouse models of mitochondrial deficiencies revealed a large number of duplications, suggesting that these may previously have been underestimated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 46
Typ av publikation
tidskriftsartikel (46)
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Wang, T. (1)
Pluta, J. (1)
Nguyen, T. (1)
Aaltonen, LA (1)
Kristiansson, Erik, ... (1)
Johansson, Gustav (1)
visa fler...
Wolf, A. (1)
Lau, J. (1)
Almqvist, C (1)
Boomsma, DI (1)
Lu, Y (1)
Hubner, N. (1)
Holmdahl, R (1)
Kere, J (1)
Hughes, Diarmaid, 19 ... (1)
Abel, Frida, 1974 (1)
Nilsson, Staffan, 19 ... (1)
Ejeskär, Katarina, 1 ... (1)
Jacobsson, Bo, 1960 (1)
Sahoo, S. (1)
Olson, L (1)
Magnusson, PKE (1)
Kampmeyer, Caroline (1)
Stein, Amelie (1)
Lindorff-Larsen, Kre ... (1)
Hartmann-Petersen, R ... (1)
Zhao, W. (1)
Cava, Felipe (1)
Eloranta, Maija-Leen ... (1)
Lindblad-Toh, Kersti ... (1)
Hao, Xinxin (1)
Liu, Beidong, 1972 (1)
Viikari, Jorma (1)
Swaroop, A (1)
Nordmark, Gunnel (1)
Heinrich, Joachim (1)
Koppelman, Gerard H. (1)
Melander, Olle (1)
Sunyer, Jordi (1)
Melbye, Mads (1)
Matic, S (1)
Davey Smith, George (1)
McIntosh, AM (1)
Adams, MJ (1)
Young, GR (1)
Kaldis, Philipp (1)
Busayavalasa, Kiran (1)
Borén, Jan, 1963 (1)
Andersson, Dan I. (1)
Carlsson Almlöf, Jon ... (1)
visa färre...
Lärosäte
Karolinska Institutet (14)
Uppsala universitet (11)
Göteborgs universitet (8)
Stockholms universitet (8)
Sveriges Lantbruksuniversitet (7)
Umeå universitet (5)
visa fler...
Lunds universitet (3)
Chalmers tekniska högskola (2)
Linnéuniversitetet (2)
Linköpings universitet (1)
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (46)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Medicin och hälsovetenskap (17)
Lantbruksvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy