SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:8756 3282 OR L773:1873 2763 srt2:(2020)"

Sökning: L773:8756 3282 OR L773:1873 2763 > (2020)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Lan, et al. (författare)
  • Sex differences in the longitudinal associations between body composition and bone stiffness index in European children and adolescents
  • 2020
  • Ingår i: Bone. - : Elsevier. - 8756-3282 .- 1873-2763. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • Fat mass (FM) and fat free mass (FFM) may influence bone health differentially. However, existing evidences on associations between FM, FFM and bone health are inconsistent and vary according to sex and maturity. The present study aims to evaluate longitudinal associations between FM, FFM and bone stiffness index (SI) among European children and adolescents with 6 years follow-up. A sample of 2468 children from the IDEFICS/I.Family was included, with repeated measurements of SI using calcaneal quantitative ultrasound, body composition using skinfold thickness, sedentary behaviors and physical activity using self-administrated questionnaires. Regression coefficients (β) and 99%-confidence intervals (99% CI) were calculated by sex-specified generalized linear mixed effects models to analyze the longitudinal associations between FM and FFM z-scores (zFM and zFFM) and SI percentiles, and to explore the possible interactions between zFM, zFFM and maturity. Baseline zFFM was observed to predict the change in SI percentiles in both boys (β = 4.57, 99% CI: 1.36, 7.78) and girls (β = 3.42, 99% CI: 0.05, 6.79) after 2 years. Moreover, baseline zFFM (β = 8.72, 99% CI: 3.18, 14.27 in boys and β = 5.89, 99% CI: 0.34, 11.44 in girls) and the change in zFFM (β = 6.58, 99% CI: 0.83, 12.34 in boys and β = 4.81, 99% CI: -0.41, 10.02 in girls) were positively associated with the change in SI percentiles after 6 years. In contrast, a negative association was observed between the change in zFM and SI percentiles in boys after 6 years (β = -3.70, 99% CI: -6.99, -0.42). Besides, an interaction was observed between the change in zFM and menarche on the change in SI percentiles in girls at 6 years follow-up (p = .009), suggesting a negative association before menarche while a positive association after menarche. Our findings support the existing evidences for a positive relationship between FFM and SI during growth. Furthermore, long-term FM gain was inversely associated with SI in boys, whereas opposing associations were observed across menarche in girls. 
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Grassi, Lorenzo, et al. (författare)
  • Validation of 3d finite element models from simulated Dxa images for Biofidelic simulations of sideways fall impact to the hip
  • 2020
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 142
  • Tidskriftsartikel (refereegranskat)abstract
    • Computed tomography (CT)-derived finite element (FE) models have been proposed as a tool to improve the current clinical assessment of osteoporosis and personalized hip fracture risk by providing an accurate estimate of femoral strength. However, this solution has two main drawbacks, namely: (i) 3D CT images are needed, whereas 2D dual-energy x-ray absorptiometry (DXA) images are more generally available, and (ii) quasi-static femoral strength is predicted as a surrogate for fracture risk, instead of predicting whether a fall would result in a fracture or not. The aim of this study was to combine a biofidelic fall simulation technique, based on 3D computed tomography (CT) data with an algorithm that reconstructs 3D femoral shape and BMD distribution from a 2D DXA image. This approach was evaluated on 11 pelvis-femur constructs for which CT scans, ex vivo sideways fall impact experiments and CT-derived biofidelic FE models were available. Simulated DXA images were used to reconstruct the 3D shape and bone mineral density (BMD) distribution of the left femurs by registering a projection of a statistical shape and appearance model with a genetic optimization algorithm. The 2D-to-3D reconstructed femurs were meshed, and the resulting FE models inserted into a biofidelic FE modeling pipeline for simulating a sideways fall. The median 2D-to-3D reconstruction error was 1.02 mm for the shape and 0.06 g/cm3 for BMD for the 11 specimens. FE models derived from simulated DXAs predicted the outcome of the falls in terms of fracture versus non-fracture with the same accuracy as the CT-derived FE models. This study represents a milestone towards improved assessment of hip fracture risk based on widely available clinical DXA images.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Liphardt, Anna-Maria, et al. (författare)
  • Changes in mechanical loading affect arthritis-induced bone loss in mice.
  • 2020
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • Arthritis induces bone loss by inflammation-mediated disturbance of bone homeostasis. On the other hand, pain and impaired locomotion are highly prevalent in arthritis and result in reduced general physical activity and less pronounced mechanical loading. Bone is affected by mechanical loading, directly through impact with the ground during movement and indirectly through muscular activity. Mechanical loading in its physiological range is essential for maintaining bone mass, whereas disuse leads to bone loss. The aim of this study was to investigate the impact of mechanical loading on periarticular bone as well as inflammation during arthritis. Mechanical loading was either blocked by botulinum neurotoxin A (Botox) injections before induction of arthritis, or enhanced by cyclic compressive loading, three times per week during arthritis induction. Arthritis was verified and evaluated histologically. Trabecular and cortical bone mass were investigated using micro-computed tomography (μCT), subchondral osteoclastogenesis and bone turnover was assessed by standard methods. Inhibition of mechanical loading enhanced arthritis-induced bone loss while it did not affect inflammation. In contrast, enhanced mechanical loading mitigated arthritis-induced bone loss. Furthermore, the increase in bone resorption markers by arthritis was partly blocked by mechanical loading. In conclusion, enhanced arthritic bone loss after abrogation of mechanical loading suggests that muscle forces play an essential role in preventing arthritic bone loss. In accordance, mechanical loading of the arthritic joints inhibited bone loss, emphasizing that weight bearing activities may have the potential to counteract arthritis-mediated bone loss.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy