SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gih ;pers:(Apró William)"

Sökning: LAR1:gih > Apró William

  • Resultat 1-10 av 58
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Apró, William, et al. (författare)
  • Amino Acid-induced S6K1 Activity In Human Skeletal Muscle Is Mediated By Increased mTor/Rheb Interaction : 128 June 1, 11: 15 AM - 11: 30 AM.
  • 2016
  • Ingår i: Medicine And Science In Sports And Exercise 2016 May; Vol. 48 (5S Suppl 1), pp. 17.. - : Ovid Technologies (Wolters Kluwer Health). ; 48:5 Suppl 1, s. 17-
  • Konferensbidrag (refereegranskat)abstract
    • Cell culture studies have shown that amino acids activate mTORC1 signaling by increasing the interaction between mTOR and its essential activator Rheb. However, the existence of this mechanism in human skeletal muscle remains to be determined.PURPOSE: To determine if increased mTORC1 signaling in response to amino acids in human skeletal muscle is due to an increased interaction between mTOR and Rheb.METHODS: Eight well trained men performed resistance exercise on two separate occasions. In connection with the exercise, subjects were supplemented with flavored water (Pla) and essential amino acids (EAA) in a double-blind, randomized cross-over design. Muscle biopsies were taken in the vastus lateralis muscle before, immediately after and 90 and 180 min post exercise. Activity of the mTORC1 pathway was assessed by a radiolabeled in-vitro kinase assay for its immediate downstream target S6K1. Protein-protein interactions were determined by western blot following co-immunoprecipitation of mTOR with Rheb. Co-immunoprecipitation was performed on pooled muscle samples from three of the eight subjects.RESULTS: Activity of S6K1 remained unchanged immediately after exercise in both trials. However, at 90 min post exercise, S6K1 activity increased by approximately 2- and 8-fold (p<0.05) from baseline the Pla and EAA trials, respectively. At the 180 min time point, S6K1 activity remained elevated in both trials being approx. 3-fold higher in the Pla trial and 5-fold higher (p<0.05) in the EAA trial. The fold-change in mTOR and Rheb interaction largely resembled the activity pattern of S6K1 in both trials; in the Pla trial the fold-change was 0.9, 1.3 and 1.4 while in the EAA trial the fold-change was 1.6, 2.9 and 1.9 immediately after, 90 min after and 180 min after exercise, respectively.CONCLUSIONS: The large increase in S6K1 activity following EAA intake appears to be mediated by an increased interaction between mTOR and its proximal activator Rheb. This is the first time this mechanism has been demonstrated in human skeletal muscle.
  •  
2.
  • Apró, William, 1980-, et al. (författare)
  • Endurance Exercise Does Not Impair mTOR Signalling After Resistance Exercise : D-58 Thematic Poster - Skeletal Muscle Cell Signaling: JUNE 2, 2011 3:15 PM - 5:15 PM: ROOM: 304
  • 2011
  • Ingår i: Medicine & Science in Sports & Exercise. - 0195-9131 .- 1530-0315. ; 43:5, s. 52-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Resistance exercise is known to stimulate muscle hypertrophy and this effect is mainly mediated by the mammalian target of rapamycin (mTOR) pathway. In contrast, endurance exercise results in a divergent phenotypic response which to a large extent is mediated by adenosine monophosphate-activated protein kinase (AMPK). Research indicates that molecular interference may exist, possibly through an inhibitory effect on mTOR signalling by AMPK, when these two modes of exercise are combined. PURPOSE: To investigate the impact of subsequent endurance exercise on resistance exercise induced mTOR signalling. METHODS: In a randomized and cross-over fashion, ten male subjects performed either heavy resistance exercise (R) or heavy resistance exercise followed by endurance exercise (RE) on two separate occasions. The R protocol consisted of thirteen sets of leg press exercise with 3 minutes of recovery allowed between each set. In the RE session, resistance exercise was followed by 15 minutes recovery after which 30 min of cycling was initiated at an intensity equal to 70 % of the subjects' maximal oxygen consumption. Muscle biopsies were collected before, 1 and 3 hours after resistance exercise in both trials. Samples were analyzed for several signalling proteins in the mTOR pathway using western blot technique. RESULTS: Phosphorylation of mTOR increased approx. twofold at 1 h post resistance exercise and remained elevated at the 3 h time point (p< 0.01) with no difference between the two trials. Phosphorylation of p70S6k, a downstream target of mTOR, was increased about 6-and18-fold at 1 h and 3 h post resistance exercise (p< 0.01). There was no difference in p70S6k phosphorylation at any time point between the two trials. Phosphorylation of the eukaryotic elongation factor eEF2 was decreased 3- to 4-fold at both time points post resistance exercise (p< 0.01) with no difference between trials. Phosphorylation of AMPK was unchanged at the 1 h time point but decreased approximately 30 % from pre-exercise values in both trials at 3 h post resistance exercise (p< 0.01). CONCLUSIONS: The signalling response following heavy resistance exercise is not blunted by subsequent endurance exercise. Supported by the Swedish National Centre for Research in Sports.
  •  
3.
  •  
4.
  • Apró, William, et al. (författare)
  • Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle.
  • 2010
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 200:3, s. 237-48
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Skeletal muscle growth is thought to be regulated by the mammalian target of rapamycin (mTOR) pathway, which can be activated by resistance exercise and branched-chain amino acids (BCAA). The major aim of the present study was to distinguish between the influence of resistance exercise and BCAA on key enzymes considered to be involved in the regulation of protein synthesis, including p70(S6) kinase (p70(S6k)). METHODS: Nine healthy subjects (four men and five women) performed unilateral resistance exercise on two occasions separated by 1 month. Subjects were randomly supplied either a mixture of BCAA or flavoured water. Muscle biopsies were taken from both resting and exercising muscle before, after and 1 h after exercise. RESULTS: Phosphorylation of Akt was unaltered by either resistance exercise and/or BCAA supplementation whereas mTOR phosphorylation was enhanced (P<0.05) to a similar extent in both exercising and resting muscle following exercise in the absence (70-90%) and presence of BCAA supplementation (80-130%). Phosphorylation of p70(S6k) was unaffected by resistance exercise alone; however, BCAA intake increased (P<0.05) this phosphorylation in both legs following exercise. In resting muscle, a 5- and 16-fold increase in p70(S6k) was observed immediately after and 1 h after exercise, respectively, as compared to 11- and 30-fold increases in the exercising muscle. Phosphorylation of eukaryotic elongation factor 2 was attenuated 1 h after exercise (P<0.05) in both resting (10-40%) and exercising muscle (30-50%) under both conditions. CONCLUSION: The present findings indicate that resistance exercise and BCAA exert both separate and combined effects on the p70(S6k) phosphorylation in an Akt-independent manner.
  •  
5.
  •  
6.
  •  
7.
  • Apró, William, et al. (författare)
  • Leucine does not affect mechanistic target of rapamycin complex 1 assembly but is required for maximal ribosomal protein s6 kinase 1 activity in human skeletal muscle following resistance exercise
  • 2015
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 29:10, s. 4358-4373
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined how the stimulatory effect of leucine on the mechanistic target of rapamycin complex 1 (mTORC1) pathway is affected by the presence of the remaining essential amino acids (EAAs). Nine male subjects performed resistance exercise on 4 occasions and were randomly supplied EAAs with leucine, EAAs without leucine (EAA-Leu), leucine alone, or flavored water (placebo; control). Muscle biopsies were taken from the vastus lateralis before and 60 and 90 min after exercise. Biopsies were analyzed for protein phosphorylation, kinase activity, protein-protein interactions, amino acid concentrations, and tracer incorporation. Leucine alone stimulated ribosomal protein s6 kinase 1 (S6K1) phosphorylation similar to 280% more than placebo and EAA-Leu after exercise. Moreover, this response was enhanced by 60-75% after intake of EAAs compared with that of leucine alone (P < 0.05). Kinase activity of S6K1 reflected that of S6K1 phosphorylation; 60 min after exercise, the activity was elevated 3.3- and 4.2-fold with intake of leucine alone and with EAAs, respectively (P < 0.05). The interaction between mammalian target of rapamycin and regulatory-associated protein of mammalian target of rapamycin was unaltered in response to both resistance exercise and amino acid provision. Leucine alone stimulates mTORC1 signaling, although this response is enhanced by other EAAs and does not appear to be caused by alterations inmTORC1 assembly.
  •  
8.
  •  
9.
  • Apró, William (författare)
  • Regulation of protein synthesis in human skeletal muscle : separate and combined effects of exercise and amino acids
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Skeletal muscle is a highly plastic tissue which has the ability to adapt to various forms of external stimuli such as diverse modes of contractile activity. Thus, performance of endurance exercise over several of weeks results in increased oxidative capacity. In contrast, prolonged performance of resistance exercise ultimately results in increased muscle mass. These adaptations are brought about by transient alterations in gene expression and mRNA translation which result in altered protein turnover, i.e. the balance between protein synthesis and protein breakdown. Protein synthesis is the major determinant of muscle growth, which at the molecular level, is regulated by the mTORC1 pathway. This pathway is potently activated by resistance exercise and amino acids, but the stimulatory role of individual amino acids in human skeletal muscle is unclear. Muscle adaptations in response to endurance exercise are largely dependent on the PGC-1 α pathway, which regulates mitochondrial biogenesis. Given the different training adaptations after resistance and endurance exercise, it has been suggested that these exercise modalities may be incompatible when combined. Such potential interference could be exerted at the molecular level between the pathways responsible for each adaptive response. AMPK, an enzyme usually activated by endurance exercise and, when pharmacologically activated in cell culture and rodent models, has been shown to inhibit mTORC1 and protein synthesis. However, it is not known if activation of AMPK by endurance exercise inhibits resistance exercise induced signaling through the mTORC1 pathway in human skeletal muscle.Thus, the main objective of this thesis was to examine the molecular mechanisms regulating protein synthesis in response to amino acids and various modes of exercise in human skeletal muscle.In study I, the role of BCAAs in stimulating the mTORC1 pathway was examined in both resting and exercising muscle. BCAA increased mTORC1 activity, as assessed by S6K1 phosphorylation, in both resting and exercising muscle, but more so when exercise and BCAA were combined. In study II, the effect of leucine was compared to that of essential amino acids with or without leucine. It was found that when leucine was combined with the remaining essential amino acids, S6K1 phosphorylation was more pronounced than when leucine was provided alone. Furthermore, when leucine was removed from the essential amino acids, the effect was equal to that of placebo. In study III, the impact of endurance exercise on resistance exercise induced mTORC1 signaling was examined. When performed after resistance exercise, endurance exercise did not inhibit S6K1 phosphorylation compared to when single mode resistance exercise was performed. In study IV, performance of high intensity endurance exercise prior to resistance exercise did not inhibit S6K1 phosphorylation compared to single mode resistance exercise, despite prior activation of AMPK.In conclusion, amino acids and resistance exercise activate mTORC1 signaling, as assessed by S6K1 phosphorylation, in a synergistic manner. Leucine is crucial in mediating the amino acid response, however, additional amino acids appear to be required to induce a maximal response downstream of mTORC1. Activation of the mTORC1 pathway in response to heavy resistance exercise is robust and this activation does not appear to be inhibited by prior or by subsequent endurance exercise. As such, these results do not lend support to the existence of molecular interference when resistance and endurance exercise are combined acutely.
  •  
10.
  • Apró, William, et al. (författare)
  • Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle.
  • 2013
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 305:1, s. E22-32
  • Tidskriftsartikel (refereegranskat)abstract
    • The current dogma is that the muscle adaptation to resistance exercise is blunted when combined with endurance exercise. The suggested mechanism (based on rodent experiments) is that activation of adenosine monophosphate-activated protein kinase (AMPK) during endurance exercise impairs muscle growth through inhibition of the mechanistic target of rapamycin complex 1 (mTORC1). The purpose of this study was to investigate potential interference of endurance training on the signaling pathway of resistance training [mTORC1 phosphorylation of ribosomal protein S6 kinase 1 (S6K1)] in human muscle. Ten healthy and moderately trained male subjects performed on two separate occasions either acute high-intensity and high-volume resistance exercise (leg press, R) or R followed by 30 min of cycling (RE). Muscle biopsies were collected before and 1 and 3 h post resistance exercise. Phosphorylation of mTOR (Ser(2448)) increased 2-fold (P < 0.05) and that of S6K1 (Thr(389)) 14-fold (P < 0.05), with no difference between R and RE. Phosphorylation of eukaryotic elongation factor 2 (eEF2, Thr(56)) was reduced ∼70% during recovery in both trials (P < 0.05). An interesting finding was that phosphorylation of AMPK (Thr(172)) and acetyl-CoA carboxylase (ACC, Ser(79)) decreased ∼30% and ∼50%, respectively, 3 h postexercise (P < 0.05). Proliferator-activated receptor-γ coactivator-1 (PGC-1α) mRNA increased more after RE (6.5-fold) than after R (4-fold) (RE vs. R: P < 0.01) and was the only gene expressed differently between trials. These data show that the signaling of muscle growth through the mTORC1-S6K1 axis after heavy resistance exercise is not inhibited by subsequent endurance exercise. It is also suggested that prior activation of mTORC1 signaling may repress subsequent phosphorylation of AMPK.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 58
Typ av publikation
tidskriftsartikel (36)
konferensbidrag (16)
annan publikation (4)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (35)
övrigt vetenskapligt/konstnärligt (22)
populärvet., debatt m.m. (1)
Författare/redaktör
Apró, William, 1980- (34)
Blomstrand, Eva (26)
Moberg, Marcus, 1986 ... (17)
Horwath, Oscar, 1991 ... (15)
Ekblom, Björn, 1938- (14)
visa fler...
Larsen, Filip J, 197 ... (14)
Moberg, Marcus (12)
Ekblom, Björn (10)
Holmberg, Hans-Chris ... (9)
Katz, Abram (8)
Blackwood, Sarah J (7)
Pontén, Marjan (6)
Nilsson, Lina (5)
Rooyackers, Olav (4)
Ekblom, Maria, 1974- (3)
Jansson, Eva (2)
Gustafsson, Thomas (2)
Wang, Li (2)
Andersson, Alva (2)
Sahlin, Kent (2)
Holmberg, Hans-Chris ... (2)
Lundberg, Tommy R. (2)
Esbjörnsson, Mona (2)
Borgenvik, Marcus (2)
Ellefsen, Stian (1)
Rooyackers, O (1)
Hamilton, L. (1)
Andersson, Eva, 1958 ... (1)
Söderlund, Karin (1)
Willis, Sarah J. (1)
Holmberg, Hans-Chris ... (1)
Raastad, Truls (1)
Paulsen, Göran (1)
Godhe, Manne (1)
Helge, Torbjörn (1)
Nilsson, Per H., 198 ... (1)
Granberg, Jonas (1)
Hamilton, D. Lee (1)
Holmberg, HC (1)
Blomstrand, Eva, Pro ... (1)
Rooyackers, Olav, Pr ... (1)
Kjaer, Michael, Prof ... (1)
van Hall, G. (1)
Wernbom, Mathias (1)
Philp, Andrew (1)
Hirschberg, Angelica ... (1)
Lindén Hirschberg, A ... (1)
Calbet, José A L (1)
Melin, Michael (1)
visa färre...
Lärosäte
Gymnastik- och idrottshögskolan (58)
Karolinska Institutet (32)
Luleå tekniska universitet (6)
Mittuniversitetet (6)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Örebro universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (55)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (45)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy