SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;mspu:(article);lar1:(cth);lar1:(slu);pers:(Gabrielsson Johan)"

Sökning: LAR1:gu > Tidskriftsartikel > Chalmers tekniska högskola > Sveriges Lantbruksuniversitet > Gabrielsson Johan

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cardilin, Tim, 1989, et al. (författare)
  • Evaluation and translation of combination therapies in oncology – A quantitative approach
  • 2018
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 0014-2999 .- 1879-0712. ; 834, s. 327-336
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative techniques improve our understanding of tumor volume data for combination treatments and its translation across in vivo models and species. The focus of this paper is therefore on understanding in vivo data, highlighting key structural elements of pharmacodynamic tumor models, and challenging these methods from a translational point of view. We introduce the concept of Tumor Static Exposure (TSE) both for single and multiple combined anticancer agents. The TSE curve separates all possible exposure combinations into regions of tumor growth and tumor shrinkage. Moreover, the degree of curvature of the TSE curve indicates the degree of synergy or antagonism. We demonstrate the TSE approach by two case studies. The first examines a combination of the drugs cetuximab and cisplatin. The TSE curve associated with this combination reveals a weak synergistic effect, suggesting only modest gains from combination therapy. The second case study examines combinations of ionizing radiation and a radiosensitizing agent. In this case, the TSE curve exhibits a pronounced curvature, indicating a strong synergistic effect; tumor regression can be achieved at significantly lower exposure levels and/or radiation doses. Finally, an allometric approach to human dose prediction demonstrates the translational power of the model and the TSE concept. We conclude that the TSE approach, which embodies model-based measures of both drug (potency) and target properties (tumor growth rate), has a strong potential for ranking of compounds, supporting compound selection, and translating preclinical findings to humans.
  •  
2.
  • Cardilin, Tim, 1989, et al. (författare)
  • Model-based evaluation of radiation and radiosensitizing agents in oncology
  • 2018
  • Ingår i: CPT: Pharmacometrics and Systems Pharmacology. - : Wiley. - 2163-8306. ; 7:1, s. 51-58
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 ASCPT. Radiotherapy is one of the major therapy forms in oncology, and combination therapies involving radiation and chemical compounds can yield highly effective tumor eradication. In this paper, we develop a tumor growth inhibition model for combination therapy with radiation and radiosensitizing agents. Moreover, we extend previous analyses of drug combinations by introducing the tumor static exposure (TSE) curve. The TSE curve for radiation and radiosensitizer visualizes exposure combinations sufficient for tumor regression. The model and TSE analysis are then tested on xenograft data. The calibrated model indicates that the highest dose of combination therapy increases the time until tumor regrowth 10-fold. The TSE curve shows that with an average radiosensitizer concentration of 1.0μg/mL the radiation dose can be decreased from 2.2 Gy to 0.7 Gy. Finally, we successfully predict the effect of a clinically relevant treatment schedule, which contributes to validating both the model and the TSE concept.
  •  
3.
  • Cardilin, Tim, 1989, et al. (författare)
  • Modeling long-term tumor growth and kill after combinations of radiation and radiosensitizing agents
  • 2019
  • Ingår i: Cancer Chemotherapy and Pharmacology. - : Springer Science and Business Media LLC. - 0344-5704 .- 1432-0843. ; 83:6, s. 1159-1173
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Radiation therapy, whether given alone or in combination with chemical agents, is one of the cornerstones of oncology. We develop a quantitative model that describes tumor growth during and after treatment with radiation and radiosensitizing agents. The model also describes long-term treatment effects including tumor regrowth and eradication. Methods: We challenge the model with data from a xenograft study using a clinically relevant administration schedule and use a mixed-effects approach for model-fitting. We use the calibrated model to predict exposure combinations that result in tumor eradication using Tumor Static Exposure (TSE). Results: The model is able to adequately describe data from all treatment groups, with the parameter estimates taking biologically reasonable values. Using TSE, we predict the total radiation dose necessary for tumor eradication to be 110 Gy, which is reduced to 80 or 30 Gy with co-administration of 25 or 100 mg kg −1 of a radiosensitizer. TSE is also explored via a heat map of different growth and shrinkage rates. Finally, we discuss the translational potential of the model and TSE concept to humans. Conclusions: The new model is capable of describing different tumor dynamics including tumor eradication and tumor regrowth with different rates, and can be calibrated using data from standard xenograft experiments. TSE and related concepts can be used to predict tumor shrinkage and eradication, and have the potential to guide new experiments and support translations from animals to humans.
  •  
4.
  • Cardilin, Tim, 1989, et al. (författare)
  • Tumor Static Concentration Curves in Combination Therapy
  • 2017
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 The Author(s) Combination therapies are widely accepted as a cornerstone for treatment of different cancer types. A tumor growth inhibition (TGI) model is developed for combinations of cetuximab and cisplatin obtained from xenograft mice. Unlike traditional TGI models, both natural cell growth and cell death are considered explicitly. The growth rate was estimated to 0.006 h−1 and the natural cell death to 0.0039 h−1 resulting in a tumor doubling time of 14 days. The tumor static concentrations (TSC) are predicted for each individual compound. When the compounds are given as single-agents, the required concentrations were computed to be 506 μg · mL−1 and 56 ng · mL−1 for cetuximab and cisplatin, respectively. A TSC curve is constructed for different combinations of the two drugs, which separates concentration combinations into regions of tumor shrinkage and tumor growth. The more concave the TSC curve is, the lower is the total exposure to test compounds necessary to achieve tumor regression. The TSC curve for cetuximab and cisplatin showed weak concavity. TSC values and TSC curves were estimated that predict tumor regression for 95% of the population by taking between-subject variability into account. The TSC concept is further discussed for different concentration-effect relationships and for combinations of three or more compounds.
  •  
5.
  • Gennemark, Peter, 1974, et al. (författare)
  • Modeling energy intake by adding homeostatic feedback and drug intervention
  • 2015
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 42:1, s. 79-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy intake (EI) is a pivotal biomarker used in quantification approaches to metabolic disease processes such as obesity, diabetes, and growth disorders. Eating behavior is however under both short-term and long-term control. This control system manifests itself as tolerance and rebound phenomena in EI, when challenged by drug treatment or diet restriction. The paper describes a model with the capability to capture physiological counter-regulatory feedback actions triggered by energy imbalances. This feedback is general as it handles tolerance to both increases and decreases in EI, and works in both acute and chronic settings. A drug mechanism function inhibits (or stimulates) EI. The deviation of EI relative to a reference level (set-point) serves as input to a non-linear appetite control signal which in turn impacts EI in parallel to the drug intervention. Three examples demonstrate the potential usefulness of the model in both acute and chronic dosing situations. The model shifts the predicted concentration-response relationship rightwardly at lower concentrations, in contrast to models that do not handle functional adaptation. A fourth example further shows that the model may qualitatively explain differences in rate and extent of adaptation in observed EI and its concomitants in both rodents and humans.
  •  
6.
  • Held, Felix, et al. (författare)
  • Modelling of oscillatory cortisol response in horses using a Bayesian population approach for evaluation of dexamethasone suppression test protocols
  • 2019
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 46:1, s. 75-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortisol is a steroid hormone relevant to immune function in horses and other species and shows a circadian rhythm. The glucocorticoid dexamethasone suppresses cortisol in horses. Pituitary pars intermedia dysfunction (PPID) is a disease in which the cortisol suppression mechanism through dexamethasone is challenged. Overnight dexamethasone suppression test (DST) protocols are used to test the functioning of this mechanism and to establish a diagnosis for PPID. However, existing DST protocols have been recognized to perform poorly in previous experimental studies, often indicating presence of PPID in healthy horses. This study uses a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to analyse the oscillatory cortisol response and its interaction with dexamethasone. Two existing DST protocols were then scrutinized using model simulations with particular focus on their ability to avoid false positive outcomes. Using a Bayesian population approach allowed for quantification of uncertainty and enabled predictions for a broader population of horses than the underlying sample. Dose selection and sampling time point were both determined to have large influence on the number of false positives. Advice on pitfalls in test protocols and directions for possible improvement of DST protocols were given. The presented methodology is also easily extended to other clinical test protocols.
  •  
7.
  • Leander, Jacob, 1987, et al. (författare)
  • Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats
  • 2015
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 17:3, s. 586-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.
  •  
8.
  • Tapani, Sofia, 1982, et al. (författare)
  • Joint feedback analysis modeling of nonesterified fatty acids in obese zucker rats and normal sprague-dawley rats after different routes of administration of nicotinic acid
  • 2014
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 103:8, s. 2571-2584
  • Tidskriftsartikel (refereegranskat)abstract
    • Data were pooled from several studies on nicotinic acid (NiAc) intervention of fatty acid turnover in normal Sprague-Dawley and obese Zucker rats in order to perform a joint PKPD of data from more than 100 normal Sprague-Dawley and obese Zucker rats, exposed to several administration routes and rates. To describe the difference in pharmacodynamic parameters between obese and normal rats, we modified a previously published nonlinear mixed effects model describing tolerance and oscillatory rebound effects of NiAc on nonesterified fatty acids plasma concentrations. An important conclusion is that planning of experiments and dose scheduling cannot rely on pilot studies on normal animals alone. The obese rats have a less-pronounced concentration-response relationship and need higher doses to exhibit desired response. The relative level of fatty acid rebound after cessation of NiAc administration was also quantified in the two rat populations. Building joint normal-disease models with scaling parameter(s) to characterize the "degree of disease" can be a useful tool when designing informative experiments on diseased animals, particularly in the preclinical screen. Data were analyzed using nonlinear mixed effects modeling, for the optimization, we used an improved method for calculating the gradient than the usually adopted finite difference approximation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy