SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;mspu:(researchreview);pers:(Lindahl Anders 1954)"

Sökning: LAR1:gu > Forskningsöversikt > Lindahl Anders 1954

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Améen, Caroline, 1975, et al. (författare)
  • Human embryonic stem cells: current technologies and emerging industrial applications.
  • 2008
  • Ingår i: Critical reviews in oncology/hematology. - : Elsevier BV. - 1040-8428. ; 65:1, s. 54-80
  • Forskningsöversikt (refereegranskat)abstract
    • The efficiency and accuracy of the drug development process is severely restricted by the lack of functional human cell systems. However, the successful derivation of pluripotent human embryonic stem (hES) cell lines in the late 1990s is expected to revolutionize biomedical research in many areas. Due to their growth capacity and unique developmental potential to differentiate into almost any cell type of the human body, hES cells have opened novel avenues both in basic and applied research as well as for therapeutic applications. In this review we describe, from an industrial perspective, the basic science that underlies the hES cell technology and discuss the current and future prospects for hES cells in novel and improved stem cell based applications for drug discovery, toxicity testing as well as regenerative medicine.
  •  
2.
  •  
3.
  • Brittberg, Mats, 1953, et al. (författare)
  • Autologous chondrocytes used for articular cartilage repair: an update.
  • 2001
  • Ingår i: Clinical orthopaedics and related research. - 0009-921X. ; :391 Suppl, s. S337-48
  • Forskningsöversikt (refereegranskat)abstract
    • Articular cartilage in adults has a poor ability to self-repair after a substantial injury; however, it is not known whether there is a cartilage resurfacing technique superior to the existing techniques. It is not satisfactory that at the beginning of the new millennium, there still is a lack of randomized studies comparing different cartilage repair techniques and there still is little knowledge of the natural course of a cartilaginous lesion. To date, various articular cartilage resurfacing techniques have the potential to improve the repair of cartilage defects and reduce the patient's disability. One such cartilage repair technique is autologous chondrocyte transplantation combined with a periosteal graft. Since the first patient was operated on in 1987, much interest in cartilage repair and cell engineering has emerged. The experience with autologous chondrocyte transplantation during the past 13 years with in vitro chondrocyte expansion, cartilage harvest, and postoperative biopsy technique is discussed, and the latest followup of 213 consecutive patients in different subgroups with 2 to 10 years followup is presented. The technique gives stable long-term results with a high percentage of good to excellent results (84%-90%) in patients with different types of single femoral condyle lesions, whereas patients with other types of lesions have a lower degree of success (mean, 74%).
  •  
4.
  • Karlsson, Camilla, 1977, et al. (författare)
  • Articular cartilage stem cell signalling.
  • 2009
  • Ingår i: Arthritis research & therapy. - : Springer Science and Business Media LLC. - 1478-6362 .- 1478-6354. ; 11:4
  • Forskningsöversikt (refereegranskat)abstract
    • ABSTRACT : The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of side population cells in articular cartilage, give additional support for the hypothesis that articular cartilage has residing stem cells with a potential regenerative capacity where the controlling mechanism could be future biomarkers or drug targets or both.
  •  
5.
  • Karlsson, Camilla, 1977, et al. (författare)
  • Notch signaling in chondrogenesis.
  • 2009
  • Ingår i: International review of cell and molecular biology. - 1937-6448. ; 275, s. 65-88
  • Forskningsöversikt (refereegranskat)abstract
    • The different stages of cartilage development are well described but no transcription factor capable of specifically inducing differentiation to articular cartilage has been identified and little is known about the molecular mechanisms regulating cartilage development. Notch signaling is an evolutionarily conserved pathway taking part in many developmental and cell type specification processes. It has been demonstrated that markers for Notch signaling are differentially expressed during cartilage development and there is evidence for their functional role during this process. Notch signaling has further been implicated in osteoarthritis and Notch1 has been suggested as a marker for chondrogenic progenitor cells. This review summarizes the current knowledge on the role of the Notch signaling pathway in cartilage development and osteoarthritis.
  •  
6.
  • Lindahl, Anders, 1954, et al. (författare)
  • Cartilage repair with chondrocytes: clinical and cellular aspects.
  • 2003
  • Ingår i: Novartis Foundation symposium. - 1528-2511. ; 249
  • Forskningsöversikt (refereegranskat)abstract
    • Articular cartilage has a limited potential to repair. Unsatisfactory results with current treatment methods (e.g. osteochondral autografts, drilling or microfracturing) has triggered the development of new cartilage restoration techniques including autologous cell transplantation (mesenchymal stem cells or chondrocytes) with or without supporting scaffolds. Autologous chondrocyte transplantation (ACT) was first used in humans in 1987 and the first pilot was published in 1994. Two years after transplantation, 14 of the 16 patients with femoral condyle transplants had a restored joint function and 11 of 15 femoral transplants demonstrated a hyaline repair tissue. Results from patellar transplants were less encouraging. To date, we have treated over 1000 and other groups over 6000 patients. The technique gives stable long-term results with a high percentage of good to excellent results (84-90%) in patients with different types of single femoral condyle lesions, whereas in patients with other types of lesions in the knee it is less successful (average 74%). A better understanding of the repair mechanism induced by the cultured chondrocytes and the regulatory mechanisms controlling chondrogenic differentiation combined with identification and culture of stem cells with chondrogenic potential will be the key to new cartilage treatments.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy