SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;mspu:(researchreview);pers:(Pekna Marcela 1966)"

Sökning: LAR1:gu > Forskningsöversikt > Pekna Marcela 1966

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Parpura, Vladimir, et al. (författare)
  • Glial cells in (patho)physiology.
  • 2012
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 121:1, s. 4-27
  • Forskningsöversikt (refereegranskat)abstract
    • Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.
  •  
2.
  • Pekna, Marcela, 1966, et al. (författare)
  • The Neurobiology of Brain Injury.
  • 2012
  • Ingår i: Cerebrum. - 1524-6205 .- 1524-6205. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • In a complementary article, Dr. Mark J. Ashley discusses frontline rehabilitation methods that can improve brain injury recovery outcomes. Here, Marcela Pekna and Milos Pekny explain what happens within the brain after injury and how scientists' growing awareness of the brain's capacity for repair could lead to better treatment options.
  •  
3.
  • Pekny, Milos, 1965, et al. (författare)
  • Astrocyte intermediate filaments in CNS pathologies and regeneration.
  • 2004
  • Ingår i: The Journal of pathology. - : Wiley. - 0022-3417. ; 204:4, s. 428-37
  • Forskningsöversikt (refereegranskat)abstract
    • Astroglial cells are the most abundant cells in the mammalian central nervous system (CNS), yet our knowledge about their function in health and disease has been limited. This review focuses on the recent work addressing the function of intermediate filaments in astroglial cells under severe mechanical or osmotic stress, in hypoxia, and in brain and spinal cord injury. Recent data show that when astrocyte intermediate filaments are genetically ablated in mice, reactive gliosis is attenuated and the course of several CNS pathologies is altered, while the signs of CNS regeneration become more prominent. GFAP is the principal astrocyte intermediate filament protein and dominant mutations in the GFAP gene have been shown to lead to Alexander disease, a fatal neurodegenerative condition in humans.
  •  
4.
  • Pekny, Milos, 1965, et al. (författare)
  • Astrocytes - a central element in neurological diseases.
  • 2016
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 131:3, s. 323-345
  • Forskningsöversikt (refereegranskat)abstract
    • The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer’s disease as well as other neurodegenerative diseases.
  •  
5.
  • Pekny, Milos, 1965, et al. (författare)
  • The dual role of astrocyte activation and reactive gliosis.
  • 2014
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 1872-7972 .- 0304-3940. ; 565, s. 30-38
  • Forskningsöversikt (refereegranskat)abstract
    • Astrocyte activation and reactive gliosis accompany most of the pathologies in the brain, spinal cord, and retina. Reactive gliosis has been described as constitutive, graded, multi-stage, and evolutionary conserved defensive astroglial reaction [Verkhratsky and Butt (2013) In: Glial Physiology and Pathophysiology]. A well- known feature of astrocyte activation and reactive gliosis are the increased production of intermediate filament proteins (also known as nanofilament proteins) and remodeling of the intermediate filament system of astrocytes. Activation of astrocytes is associated with changes in the expression of many genes and characteristic morphological hallmarks, and has important functional consequences in situations such as stroke, trauma, epilepsy, Alzheimer's disease (AD), and other neurodegenerative diseases. The impact of astrocyte activation and reactive gliosis on the pathogenesis of different neurological disorders is not yet fully understood but the available experimental evidence points to many beneficial aspects of astrocyte activation and reactive gliosis that range from isolation and sequestration of the affected region of the central nervous system (CNS) from the neighboring tissue that limits the lesion size to active neuroprotection and regulation of the CNS homeostasis in times of acute ischemic, osmotic, or other kinds of stress. The available experimental data from selected CNS pathologies suggest that if not resolved in time, reactive gliosis can exert inhibitory effects on several aspects of neuroplasticity and CNS regeneration and thus might become a target for future therapeutic interventions.
  •  
6.
  • Pekny, Milos, 1965, et al. (författare)
  • The role of astrocytes and complement system in neural plasticity.
  • 2007
  • Ingår i: International review of neurobiology. - 0074-7742. ; 82, s. 95-111
  • Forskningsöversikt (refereegranskat)abstract
    • In neurotrauma, brain ischemia or neurodegenerative diseases, astrocytes become reactive (which is known as reactive gliosis) and this is accompanied by an altered expression of many genes. Two cellular hallmarks of reactive gliosis are hypertrophy of astrocyte processes and the upregulation of the part of the cytoskeleton known as intermediate filaments, which are composed of nestin, vimentin, and GFAP. Our aim has been to better understand the function of reactive astrocytes in CNS diseases. Using mice deficient for astrocyte intermediate filaments (GFAP(-/-)Vim(-/-)), we were able to attenuate reactive gliosis and slow down the healing process after neurotrauma. We demonstrated the key role of reactive astrocytes in neurotrauma-at an early stage after neurotrauma, reactive astrocytes have a neuroprotective effect; at a later stage, they facilitate the formation of posttraumatic glial scars and inhibit CNS regeneration, specifically, they seem to compromise neural graft survival and integration, reduce the extent of synaptic regeneration, inhibit neurogenesis in the old age, and inhibit regeneration of severed CNS axons. We propose that reactive astrocytes are the future target for the therapeutic strategies promoting regeneration and plasticity in the brain and spinal cord in various disease conditions. Through its involvement in inflammation, opsonization, and cytolysis, complement protects against infectious agents. Although most of the complement proteins are synthesized in CNS, the role of the complement system in the normal or ischemic CNS remains unclear. Complement activiation in the CNS has been generally considered as contributing to tissue damage. However, growing body of evidence suggests that complement may be a physiological neuroprotective mechanism as well as it may participate in maintenance and repair of the adult brain.
  •  
7.
  • Tack, Reinier W. P., et al. (författare)
  • Inflammation, Anti-inflammatory Interventions, and Post-stroke Cognitive Impairment: a Systematic Review and Meta-analysis of Human and Animal Studies
  • 2023
  • Ingår i: TRANSLATIONAL STROKE RESEARCH. - 1868-4483 .- 1868-601X.
  • Forskningsöversikt (refereegranskat)abstract
    • The pathophysiology and treatment of post-stroke cognitive impairment (PSCI) are not clear. Stroke triggers an inflammatory response, which might affect synapse function and cognitive status. We performed a systematic review and meta-analysis to assess whether patients with PSCI have increased levels of inflammatory markers and whether anti-inflammatory interventions in animals decrease PSCI. We systematically searched PubMed, EMBASE, and PsychInfo for studies on stroke. For human studies, we determined the standardized mean difference (SMD) on the association between PSCI and markers of inflammation. For animal studies, we determined the SMD of post-stroke cognitive outcome after an anti-inflammatory intervention. Interventions were grouped based on proposed mechanism of action. In patients, the SMD of inflammatory markers for those with versus those without PSCI was 0.46 (95% CI 0.18; 0.76; I2 = 92%), and the correlation coefficient between level of inflammation and cognitive scores was - 0.25 (95% CI - 0.34; - 0.16; I2 = 75%). In animals, the SMD of cognition for those treated with versus those without anti-inflammatory interventions was 1.43 (95% CI 1.12; 1.74; I2 = 83%). The largest effect sizes in treated animals were for complement inhibition (SMD = 1.94 (95% CI 1.50; 2.37), I2 = 51%) and fingolimod (SMD = 2.1 (95% CI 0.75; 3.47), I2 = 81%). Inflammation is increased in stroke survivors with cognitive impairment and is negatively correlated with cognitive functioning. Anti-inflammatory interventions seem to improve cognitive functioning in animals. Complement inhibition and fingolimod are promising therapies on reducing PSCI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy