SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:liu ;pers:(Yakimova Rositsa)"

Sökning: LAR1:liu > Yakimova Rositsa

  • Resultat 1-10 av 495
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, Mohammed Metwally Gomaa, et al. (författare)
  • Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films
  • 2017
  • Ingår i: Materials Science in Semiconductor Processing. - : Elsevier BV. - 1369-8001 .- 1873-4081. ; 64, s. 32-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel oxide thin films were deposited by a simple and low-cost spray pyrolysis technique using three different precursors: nickel nitrate, nickel chloride, and nickel acetate on corning glass substrates. X-ray diffraction show that the NiO films are polycrystalline and have a cubic crystal structure, although predominantly with a preferred 111-orientation in the growth direction and a random in-plane orientation. The deconvolution of the Ni 2p and O 1s core level X-ray photoelectron-spectra of nickel oxides produced by using different precursors indicates a shift of the binding energies. The sprayed NiO deposited from nickel nitrate has an optical transmittance in the range of 60-65% in the visible region. The optical band gap energies of the sprayed NiO films deposited from nickel nitrate, nickel chloride and nickel acetate are 3.5, 3.2 and 3.43 eV respectively. Also, the extinction coefficient and refractive index of NiO films have been calculated from transmittance and reflectance measurements. The average value of refractive index for sprayed films by nickel nitrate, nickel chloride and nickel acetate are 2.1, 1.6 and 1.85 respectively. It is revealed that the band gap and refractive index of NiO films by using nickel nitrate corresponds to the commonly reported values. We attribute the observed behavior in the optical band gap and optical constants as due to the change of the Ni/O ratio.
  •  
2.
  • Alexander-Webber, J. A., et al. (författare)
  • Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.
  •  
3.
  • Alexander-Webber, J. A., et al. (författare)
  • Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 111:9, s. e096601-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (Ic) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (ρxx=0) shows a [1-(T/Tc)2] dependence and persists up to Tc>45  K at 29 T. With magnetic field Ic was found to increase ∝B3/2 and Tc∝B2. As the Fermi energy approaches the Dirac point, the ν=2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.
  •  
4.
  • Armakavicius, Nerijus, et al. (författare)
  • Cavity-enhanced optical Hall effect in epitaxial graphene detected at terahertz frequencies
  • 2017
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 421, s. 357-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Cavity-enhanced optical Hall effect at terahertz (THz) frequencies is employed to determine the free charge carrier properties in epitaxial graphene (EG) with different number of layers grown by high-temperature sublimation on 4H-SiC(0001). We find that one monolayer (ML) EG possesses p-type conductivity with a free hole concentration in the low 1012 cmᅵᅵᅵ2 range and a free hole mobility parameter as high as 1550 cm2/Vs. We also find that 6 ML EG shows n-type doping behavior with a much lower free electron mobility parameter of 470 cm2/Vs and an order of magnitude higher free electron density in the low 1013 cmᅵᅵᅵ2 range. The observed differences are discussed. The cavity-enhanced THz optical Hall effect is demonstrated to be an excellent tool for contactless access to the type of free charge carriers and their properties in two-dimensional materials such as EG.
  •  
5.
  • Armakavicius, Nerijus, et al. (författare)
  • Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect
  • 2021
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 172, s. 248-259
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we demonstrate the application of terahertz-optical Hall effect (THz-OHE) to determine directionally dependent free charge carrier properties of ambient-doped monolayer and quasi-free-standing-bilayer epitaxial graphene on 4H–SiC(0001). Directionally independent free hole mobility parameters are found for the monolayer graphene. In contrast, anisotropic hole mobility parameters with a lower mobility in direction perpendicular to the SiC surface steps and higher along the steps in quasi-free-standing-bilayer graphene are determined for the first time. A combination of THz-OHE, nanoscale microscopy and optical spectroscopy techniques are used to investigate the origin of the anisotropy. Different defect densities and different number of graphene layers on the step edges and terraces are ruled out as possible causes. Scattering mechanisms related to doping variations at the step edges and terraces as a result of different interaction with the substrate and environment are discussed and also excluded. It is suggested that the step edges introduce intrinsic scattering in quasi-free-standing-bilayer graphene, that is manifested as a result of the higher ratio between mean free path and average terrace width parameters. The suggested scenario allows to reconcile existing differences in the literature regarding the anisotropic electrical transport in epitaxial graphene.
  •  
6.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
7.
  • Baker, A M R, et al. (författare)
  • Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 87:4, s. 045414-
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy loss rates for hot carriers in graphene have been measured using graphene produced by epitaxial growth on SiC, exfoliation, and chemical vapor deposition (CVD). It is shown that the temperature dependence of the energy loss rates measured with high-field damped Shubnikov-de Haas oscillations and the temperature dependence of the weak localization peak close to zero field correlate well, with the high-field measurements understating the energy loss rates by similar to 40% compared to the low-field results. The energy loss rates for all graphene samples follow a universal scaling of T-e(4) at low temperatures and depend weakly on carrier density proportional to n(-1/2), evidence for enhancement of the energy loss rate due to disorder in CVD samples.
  •  
8.
  • Baker, A M R, et al. (författare)
  • Weak localization scattering lengths in epitaxial, and CVD graphene
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 86:23, s. 235441-
  • Tidskriftsartikel (refereegranskat)abstract
    • Weak localization in graphene is studied as a function of carrier density in the range from 1 x 10(11) cm(-2) to 1.43 x 10(13) cm(-2) using devices produced by epitaxial growth onto SiC and CVD growth on thin metal film. The magnetic field dependent weak localization is found to be well fitted by theory, which is then used to analyze the dependence of the scattering lengths L-phi, L-i, and L-* on carrier density. We find no significant carrier dependence for L-phi, a weak decrease for L-i with increasing carrier density just beyond a large standard error, and a n(-1/4) dependence for L-*. We demonstrate that currents as low as 0.01 nA are required in smaller devices to avoid hot-electron artifacts in measurements of the quantum corrections to conductivity. DOI: 10.1103/PhysRevB.86.235441
  •  
9.
  • Beshkova, Milena, et al. (författare)
  • Atomic Layer Deposition of AlN on Graphene
  • 2021
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : WILEY-V C H VERLAG GMBH. - 1862-6300 .- 1862-6319. ; 218:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene is a material with great promise for several applications within electronics. However, using graphene in any such application requires its integration in a stack of thin layers of materials. The ideal structure of graphene has a fully saturated surface without any binding sites for chemisorption of growth species, making film growth on graphene highly challenging. Herein, an attempt to deposit very thin layers of AlN using an atomic layer deposition approach is reported. It is demonstrated using X-ray photoelectron spectroscopy that Al-N are formed in the films deposited on graphene and shown by scanning electron microscopy and atomic force microscopy that the films have an island morphology. These results may be considered promising toward the development of a growth protocol for AlN on graphene and possibly also for 2D AlN fabrication.
  •  
10.
  • Beshkova, M., et al. (författare)
  • Atomic layer deposition of AlN using trimethylaluminium and ammonia
  • 2020
  • Ingår i: 21ST INTERNATIONAL SUMMER SCHOOL ON VACUUM, ELECTRON AND ION TECHNOLOGIES. - : IOP PUBLISHING LTD.
  • Konferensbidrag (refereegranskat)abstract
    • Thin AlN films were grown in a Picosun R-200 atomic layer deposition (ALD) reactor on Si substrates. Trimethylaluminium (TMA) and NH3 were used as precursors; the substrates were cleaned in-situ by H-2 and N-2 plasma. The surface morphology of the films grown was studied in the temperature range 350 - 450 degrees C. The films crystalline structure was investigated by grazing incidence X-ray diffraction. The AN films were polycrystalline with a hexagonal wurtzite structure regardless of the substrate temperature. The results of scanning electron microscopy (SEM) revealed nanometer-sized crystallites, with the size increasing from 10 nm to 30 nm as the deposition temperature was increased. The results are promising in view of further studies of the properties of thin AN films.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 495
Typ av publikation
tidskriftsartikel (340)
konferensbidrag (138)
forskningsöversikt (10)
bokkapitel (3)
doktorsavhandling (2)
samlingsverk (redaktörskap) (1)
visa fler...
patent (1)
visa färre...
Typ av innehåll
refereegranskat (478)
övrigt vetenskapligt/konstnärligt (16)
populärvet., debatt m.m. (1)
Författare/redaktör
Syväjärvi, Mikael (149)
Yakimova, Rositsa, 1 ... (79)
Janzén, Erik (62)
Khranovskyy, Volodym ... (52)
Shtepliuk, Ivan (46)
visa fler...
Kubatkin, Sergey, 19 ... (42)
Lara Avila, Samuel, ... (40)
Iakimov, Tihomir (40)
Ivanov, Ivan Gueorgu ... (38)
Syväjärvi, Mikael, 1 ... (36)
Kakanakova-Georgieva ... (30)
Jokubavicius, Valdas (29)
Eriksson, Jens (27)
Yazdi, Gholamreza (26)
Zakharov, Alexei (22)
Sun, Jianwu (21)
Hultman, Lars (19)
Virojanadara, Chariy ... (16)
Darakchieva, Vanya (15)
Lloyd Spetz, Anita (14)
Liljedahl, Rickard (14)
Giannazzo, F. (14)
Vasiliauskas, Remigi ... (14)
Lebedev, A.A. (14)
Henry, Anne (13)
Yazdi, Gholamreza, 1 ... (13)
Tzalenchuk, A.Y. (12)
Ciechonski, Rafal (12)
Beshkova, Milena (11)
Ivanov, Ivan Gueorgu ... (11)
Giannazzo, Filippo (11)
Svensson, B. G. (10)
Uvdal, Kajsa, 1961- (10)
Birch, Jens (10)
Janssen, Tjbm (10)
Zakharov, Alexei A. (10)
Johansson, Leif I. (10)
Lashkarev, G. (10)
Holtz, Per-Olof (9)
Janssen, T. J. B. M. (9)
Bouhafs, Chamseddine (9)
Kim, Kyung Ho, 1984 (9)
He, Hans, 1989 (9)
Lartsev, Arseniy, 19 ... (9)
Pecz, B. (9)
Hens, Philip (9)
Watcharinyanon, Soms ... (9)
Lazorenko, V (9)
Shi, Yuchen (9)
visa färre...
Lärosäte
Linköpings universitet (495)
Chalmers tekniska högskola (48)
Lunds universitet (40)
Kungliga Tekniska Högskolan (20)
RISE (16)
Uppsala universitet (6)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (495)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (218)
Teknik (51)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy