SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:ltu srt2:(2020);pers:(Matsakas Leonidas)"

Sökning: LAR1:ltu > (2020) > Matsakas Leonidas

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • Single cell oil and ethanol production by the oleaginous yeast Trichosporon fermentans utilizing dried sweet sorghum stalks
  • 2020
  • Ingår i: Renewable energy. - : Elsevier. - 0960-1481 .- 1879-0682. ; 146, s. 1609-1617
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of the oleaginous yeast Trichosporon fermentans to efficiently produce lipids when cultivated in dried sweet sorghum was evaluated. First, lipid production was evaluated in synthetic media mimicking the composition of sweet sorghum stalks and optimized based on the nitrogen source and C: N ratio. Under optimum conditions, the lipid production reached 3.66 g/L with 21.91% w/w lipid content by using a mixture of sucrose, glucose and fructose and peptone at C: N ratio 160. Cultivation on pre-saccharified sweet sorghum stalks offered 1.97 g/L, while it was found that sweet sorghum stalks can support yeast growth and lipid production without the need for external nitrogen source addition. At an attempt to increase the carbon source concentration for optimizing lipid production, the Crabtree effect was observed in T. fermentans. To this end, the yeast was evaluated for its potential to produce ethanol under anaerobic conditions in synthetic media and sweet sorghum. The ethanol concentration at 100 g/L glucose was 40.31 g/L, while utilizing sweet sorghum by adding a distinct saccharification step and external nitrogen source offered ethanol concentration equal to 23.5 g/L. To the authors’ knowledge, this is the first time that the Crabtree effect is observed in T. fermentans.
  •  
2.
  • Bhattacharyya, Shubhankar, et al. (författare)
  • Melt Stable Functionalized Organosolv and Kraft Lignin Thermoplastic
  • 2020
  • Ingår i: Processes. - : MDPI. - 2227-9717. ; 8:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A shift towards an economically viable biomass biorefinery concept requires the use of all biomass fractions (cellulose, hemicellulose, and lignin) for the production of high added-value products. As lignin is often underutilized, the establishment of lignin valorization routes is highly important. In-house produced organosolv as well as commercial Kraft lignin were used in this study. The aim of the current work was to make a comparative study of thermoplastic biomaterials from two different types of lignins. Native lignins were alkylate with two different alkyl iodides to produce ether-functionalized lignins. Successful etherification was verified by FT-IR spectroscopy, changes in the molecular weight of lignin, as well as 13C and 1H Nuclear Magnetic Resonance (NMR). The thermal stability of etherified lignin samples was considerably improved with the T2% of organosolv to increase from 143 °C to up to 213 °C and of Kraft lignin from 133 °C to up to 168 °C, and glass transition temperature was observed. The present study shows that etherification of both organosolv and Kraft lignin with alkyl halides can produce lignin thermoplastic biomaterials with low glass transition temperature. The length of the alkyl chain affects thermal stability as well as other thermal properties.
  •  
3.
  • Hruzova, Katerina, et al. (författare)
  • A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 711
  • Tidskriftsartikel (refereegranskat)abstract
    • The rising demand for surfactants by the pharmaceuticals and cosmetic industries has generated vast amounts of petroleum-based synthetic surfactants, which are often toxic and non-degradable. Owing to their low toxicity, stability in extreme conditions, and biodegradability, biosurfactants could represent a sustainable alternative. The present study aimed to maximize the production of rhamnolipids (RL) from Pseudomonas aeruginosa by optimizing glucose concentration, temperature, and C/N and C/P ratios. After 96 h of cultivation at 37 °C, the final RL concentration was 4.18 ± 0.19 g/L with a final yield of 0.214 ± 0.010 g/gglucose when pure glucose was used as a carbon source. At present, the main obstacle towards commercialization of RL production is economic sustainability, due to the high cost of downstream processes and media components. For this reason, a renewable source such as wood hydrolysates (from birch and spruce woodchips) was examined here as a possible source of glucose for RL production. Both hydrolysates proved to be adequate, resulting in 2.34 ± 0.17 and 2.31 ± 0.10 g/L of RL, respectively, and corresponding yields of 0.081 ± 0.006 and 0.089 ± 0.004 g/gsugar after 96 h. These results demonstrate the potential of using renewable biomass for the production of biosurfactants and, to the best of our knowledge, they constitute the first report on the use of wood hydrolysates for RL production.
  •  
4.
  • Hruzova, Katerina, et al. (författare)
  • Organosolv lignin hydrophobic micro- and nanoparticles as a low-carbon footprint biodegradable flotation collector in mineral flotation
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • Flotation is a key step during mineral separation. Xanthates are the most commonly used collectors for recovering Cu, Ni, and Zn from sulphide ores. However, xanthates are fossil-based and toxic for the environment. The aim of this study was to evaluate the use of lignin nanoparticles and microparticles as sustainable and environmentally friendly collectors. Lignin particles demonstrated good selectivity toward Cu (chalcopyrite), with total recoveries exceeding 80% and grades of up to 8.6% w/w from a Cu-Ni ore in rougher flotation tests. When floating Zn-Pb-Cu ore, lignin nanoparticles could reduce the use of xanthates by 50%. Moreover, they outperformed xanthates alone, achieving total recoveries of up to 91%, 85%, and 98% for Cu, Pb, and Zn, respectively. These results prove the potential of lignin as a flotation collector.
  •  
5.
  • Hrůzová, Kateřina, et al. (författare)
  • Second-Generation Biofuel Production from the Marine Filter Feeder Ciona intestinalis
  • 2020
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 8:22, s. 8373-8380
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofuels are essential for transitioning to a sustainable society. This switch can be achieved by introducing novel feedstocks and technologies for efficient and economically feasible biofuel production. Second-generation biofuels are particularly advantageous, as they are produced from nonedible lignocellulosic biomass derived primarily from agricultural byproducts. Ciona intestinalis, a marine filter feeder, is cultivated to produce fish feed from the invertebrate’s inner tissue body. This process generates also vast amounts of a renewable side stream, namely the tunicate’s external cellulose-rich tunic. The aim of the present study was to evaluate the potential of the C. intestinalis tunic as a novel feedstock for bioethanol production. For this purpose, organosolv fractionation of the tunic was optimized to increase cellulose content. Enzymatic saccharification of the pretreated biomass was assessed to identify the most promising materials, which were subsequently utilized as carbon source in fermentation trials. Under optimal conditions, a titer of 38.7 g/L of ethanol, with a yield of 78.3% of the maximum theoretical, was achieved. To the best of our knowledge, this is the first report whereby organosolv pretreated tunic biomass is valorized toward bioethanol production; the current work paves the way for incorporating tunicates in bioconversion processes for the generation of biofuels and other biobased chemicals.
  •  
6.
  • Karnaouri, Anthi C., et al. (författare)
  • Lytic Polysaccharide Monooxygenase-Assisted Preparation of Oxidized-Cellulose Nanocrystals with a High Carboxyl Content from the Tunic of Marine Invertebrate Ciona intestinalis
  • 2020
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 8:50, s. 18400-18412
  • Tidskriftsartikel (refereegranskat)abstract
    • The tunicate species Ciona intestinalis is a fast-growing marine invertebrate animal that contains cellulose in its outer part - the tunic. The high crystallinity and microfibril aspect ratio of tunicate cellulose make it an excellent starting material for the isolation of nanocellulose. In the present work, tunic from C. intestinalis was subjected to organosolv pretreatment followed by bleaching and acid-hydrolysis steps for the isolation of nanocrystals. Applying an intermediate enzymatic treatment step with a lytic polysaccharide monooxygenase (LPMO) from the thermophilic fungus Thermothelomyces thermophila was proved to facilitate the isolation of nanocellulose and to improve the overall process yield, even when the bleaching step was omitted. LPMOs are able to oxidatively cleave the glycosidic bonds of a polysaccharide substrate, either at the C1 and/or C4 position, with the former leading to introduction of carboxylate moieties. X-ray photoelectron spectroscopy analysis showed a significant increase in the atomic percentage of the C═O/O-C-O and O-C═O bonds upon the addition of LPMO, while the obtained nanocrystals exhibited higher thermal stability compared to the untreated ones. Moreover, an enzymatic post-treatment with LPMOs was performed to additionally functionalize the cellulose nanocrystals. Our results demonstrate that LPMOs are promising candidates for the enzymatic modification of cellulose fibers, including the preparation of oxidized-nanocellulose, and offer great perspectives for the production of novel biobased nanomaterials. ©
  •  
7.
  • Matsakas, Leonidas, et al. (författare)
  • A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 316
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising environmental concerns and the imminent depletion of fossil resources have sparked a strong interest towards the production of renewable energy such as biomethane. Inclusion of alternative feedstock’s such as lignocellulosic biomass could further expand the production of biomethane. The present study evaluated the potential of a novel hybrid organosolv-steam explosion fractionation for delivering highly digestible pretreated solids from birch and spruce woodchips. The highest methane production yield was 176.5 mLCH4 gVS−1 for spruce and 327.2 mL CH4 gVS−1 for birch. High methane production rates of 1.0–6.3 mL min−1 (spruce) and 6.0–35.5 mL min−1 (birch) were obtained, leading to a rapid digestion, with 92% of total methane from spruce being generated in 80 h and 95% of that from birch in 120 h. These results demonstrate the elevated potential of the novel method to fractionate spruce and birch biomass and deliver cellulose-rich pretreated solids with superior digestibility.
  •  
8.
  • Matsakas, Leonidas, et al. (författare)
  • Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery
  • 2020
  • Ingår i: Industrial crops and products (Print). - : Elsevier. - 0926-6690 .- 1872-633X. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin still remains an underutilized plentiful resource whose conversion to high-added value products is a cornerstone towards establishing a viable biomass biorefinery. Bio-materials in the form of nanoparticles represent promising high-value products with numerous downstream applications. The aim of the current work was to develop a method that would allow controlling the size of (birch and spruce) lignin nano- and micro-particles for their subsequent recovery into a solid product. We tested different two-step and one-step isolation processes and demonstrated that particle size could be easily controlled to meet different ranges (<100 nm, <500 nm, and>1 μm). In general, two-step isolation methods, i.e. a step of decrease of solvent concentration followed by isolation of lignin particles, were better for the isolation of well-defined spherical particles. In particular, the rate at which ethanol concentration was decreased played a significant role in determining the size of lignin particles. Moreover, when lignin concentration was increased from 1 % to 5 % and 10 % (w/v), particle size and homogeneity decreased slightly, but productivity augmented. The present study demonstrates that different isolation methods can be applied to obtain renewable, customarily sized, lignin spherical micro- and nano-particles.
  •  
9.
  • Najjarzadeh, Nasim, et al. (författare)
  • Effect of Oligosaccharide Degree of Polymerization on the Induction of Xylan-Degrading Enzymes by Fusarium oxysporum f. sp. Lycopersici
  • 2020
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 25:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Xylan is one of the most abundant carbohydrates on Earth. Complete degradation of xylan is achieved by the collaborative action of endo-β-1,4-xylanases and β-d-xylosidases and a number of accessories enzymes. In filamentous fungi, the xylanolytic system is controlled through induction and repression. However, the exact mechanism remains unclear. Substrates containing xylan promote the induction of xylanases, which release xylooligosaccharides. These, in turn, induce expression of xylanase-encoding genes. Here, we aimed to determine which xylan degradation products acted as inducers, and whether the size of the released oligomer correlated with its induction strength. To this end, we compared xylanase production by different inducers, such as sophorose, lactose, cellooligosaccharides, and xylooligosaccharides in Fusarium oxysporum f. sp. lycopersici. Results indicate that xylooligosaccharides are more effective than other substrates at inducing endoxylanase and β-xylosidases. Moreover, we report a correlation between the degree of xylooligosaccharide polymerization and induction efficiency of each enzyme. Specifically, xylotetraose is the best inducer of endoxylanase, xylohexaose of extracellular β-xylosidase, and xylobiose of cell-bound β-xylosidase.
  •  
10.
  • Najjarzadeh, Nasim, et al. (författare)
  • Numerical modeling and verification of a sonobioreactor and its application on two model microorganisms
  • 2020
  • Ingår i: PLOS ONE. - : PLOS. - 1932-6203. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasound has many uses, such as in medical imaging, monitoring of crystallization, characterization of emulsions and suspensions, and disruption of cell membranes in the food industry. It can also affect microbial cells by promoting or slowing their growth and increasing the production of some metabolites. However, the exact mechanism explaining the effect of ultrasound has not been identified yet. Most equipment employed to study the effect of ultrasound on microorganisms has been designed for other applications and then only slightly modified. This results in limited control over ultrasound frequency and input power, or pressure distribution in the reactor. The present study aimed to obtain a well-defined reactor by simulating the pressure distribution of a sonobioreactor. Specifically, we optimized a sonotrode to match the bottle frequency and compared it to measured results to verify the accuracy of the simulation. The measured pressure distribution spectrum presented the same overall trend as the simulated spectrum. However, the peaks were much less intense, likely due to non-linear events such as the collapse of cavitation bubbles. To test the application of the sonobioreactor in biological systems, two biotechnologically interesting microorganisms were assessed: an electroactive bacterium, Geobacter sulfurreducens, and a lignocellulose-degrading fungus, Fusarium oxysporum. Sonication resulted in increased malate production by G. sulfurreducens, but no major effect on growth. In comparison, morphology and growth of F. oxysporum were more sensitive to ultrasound intensity. Despite considerable morphological changes at 4 W input power, the growth rate was not adversely affected; however, at 12 W, growth was nearly halted. The above findings indicate that the novel sonobioreactor provides an effective tool for studying the impact of ultrasound on microorganisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy