SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:lu ;lar1:(lnu);pers:(Montelius Lars)"

Sökning: LAR1:lu > Linnéuniversitetet > Montelius Lars

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Månsson, Alf, et al. (författare)
  • Self-organization of motor-propelled cytoskeletal filaments at topographically defined borders.
  • 2012
  • Ingår i: Journal of Biomedicine and Biotechnology. - : Hindawi Limited. - 1110-7243 .- 1110-7251. ; 2012, s. Article ID: 647265-
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-organization phenomena are of critical importance in living organisms and of great interest to exploit in nanotechnology. Here we describe in vitro self-organization of molecular motor-propelled actin filaments, manifested as a tendency of the filaments to accumulate in high density close to topographically defined edges on nano- and microstructured surfaces. We hypothesized that this "edge-tracing" effect either (1) results from increased motor density along the guiding edges or (2) is a direct consequence of the asymmetric constraints on stochastic changes in filament sliding direction imposed by the edges. The latter hypothesis is well captured by a model explicitly defining the constraints of motility on structured surfaces in combination with Monte-Carlo simulations [cf. Nitta et al. (2006)] of filament sliding. In support of hypothesis 2 we found that the model reproduced the edge tracing effect without the need to assume increased motor density at the edges. We then used model simulations to elucidate mechanistic details. The results are discussed in relation to nanotechnological applications and future experiments to test model predictions.
  •  
2.
  • Vikhorev, Petr, et al. (författare)
  • Diffusion dynamics of motor driven transport: gradient production and self-organization of surfaces.
  • 2008
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 24:23, s. 13509-13517
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient D) given by a relationship analogous to the Einstein equation (D = kT/gamma). In this relationship, the thermal energy (kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy