SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:lu ;pers:(Gustafsson Mats);pers:(Blomqvist Göran)"

Sökning: LAR1:lu > Gustafsson Mats > Blomqvist Göran

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
4.
  •  
5.
  •  
6.
  • Gustafsson, Mats, et al. (författare)
  • Inandningsbara partiklar i järnvägsmiljöer
  • 2006
  • Rapport (övrigt vetenskapligt)abstract
    • Airborne particles from railroad traffic have been identified as an air pollution problem mainly in tunnel environments. As a result of the introduction of the environmental quality standard for inhalable particles in Sweden 2005, the interest in railroad particle pollution has increased. The present report focuses on the variation of PM10 (inhalable particles) in some railroad environments under and above ground, the way these relate to traffic and on the particles' size distributions and elemental composition. The results show that particle concentrations in above ground railroad environments do not exceed the environmental quality standard during the campaigns. Diurnal mean values of PM10 range between 19 to 25 microg/m3. On the contrary, the diurnal mean concentrations on the platforms of the underground stations Arlanda Central and Arlanda South are far above the limit value (237 and 88 microg/m3 respectively) and clear diurnal and weekly patterns in PM10 concentration, co-fluctuating with traffic, can be identified. The particle mass size distribution has an obvious peak around 5-7 ?m at Arlanda C, and slightly smaller, 2-3 microm, at Arlanda S. The concentrations of both PM10 and ultrafine particles (< 0,1 microm) vary a lot depending on different trains. Especially the ultrafine particles seem to be emitted from certain trains, but it has not been possible to identify the source of these particles. The elemental composition of the particles in the tunnel environments was dominated by iron (84 % and 74 % respectively in Arlanda C and Arlanda S), but also other metals, like Cu, Zn, Cr, Ni and Sb (only at Arlanda C) have relatively high concentrations. The tunnel measurements also give some interesting results regarding possible measures against high particle concentrations. Washing of the tunnel walls and floor was carried out on two consecutive nights, but it had no noticeable results on particle concentrations. This implies that a dominant proportion of the particles is directly emitted rather than resuspended. On certain nights, the concentrations of all particle size fractions sank to very low levels, lasting till the morning traffic began. This implies effective self ventilation during these hours. Measurements in several different environments on Stockholm central station show that PM10 vary several tens of microg/m3. Activity, related to both traffic and people, increases particle concentration. The highest concentrations were measured inside the waiting hall. Nevertheless, the concentrations on the platforms were generally at least as high as in the busy street environment outside the station. During a railroad travel, the PM10 and PM2,5 concentrations were generally low, but increase at stops and, most prominently, on entering the Arlanda airport railroad tunnels. The PM2,5 proportion is considered high, contributing to approximately 50-80 % of PM10. The sources of railroad emitted PM10 are likely to be rails, wheels and brakes, but a source apportionment has not been accomplished in this project.
7.
  • Gustafsson, Mats, et al. (författare)
  • Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material
  • 2008
  • Ingår i: Science of the Total Environment. - Institutionen för klinisk och experimentell medicin. - 0048-9697. ; 393:2-3, s. 226-240
  • Tidskriftsartikel (refereegranskat)abstract
    • In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic is the main reason for high particle concentrations in busy street- and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM10) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, PIXE and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM10, respectively. The results show that in the road simulator, where resuspension is minimised, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consists almost entirely of minerals from the pavement stone material, but also that S is enriched for the sub-micron particles and that Zn is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM10 emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results implies that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties.
8.
  • Lindbom, John, 1960-, et al. (författare)
  • Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells
  • 2007
  • Ingår i: CHEMICAL RESEARCH IN TOXICOLOGY. - AMER CHEMICAL SOC. - 0893-228X. ; 20:6, s. 937-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy