SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:nrm ;pers:(Frings Patrick J 1986)"

Sökning: LAR1:nrm > Frings Patrick J 1986

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barão, Lúcia, et al. (författare)
  • Alkaline-extractable silicon from land to ocean: A challenge for biogenic silicon determination
  • 2015
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1541-5856. ; , s. n/a-n/a
  • Tidskriftsartikel (refereegranskat)abstract
    • The biogeochemical cycling of silicon (Si) along the land-to-ocean continuum is studied by a variety of research fields and for a variety of scientific reasons. However, there is an increasing need to refine the methodology and the underlying assumptions used to determine biogenic silica (BSi) concentrations. Recent evidence suggests that contributions of nonbiogenic sources of Si dissolving during alkaline extractions, not corrected by standard silicate mineral dissolution correction protocols, can be substantial. The ratio between dissolved Si and aluminum (Al) monitored continuously during the alkaline extraction can be used to infer the origin of the Si fractions present. In this study, we applied both a continuous analysis method (0.5 M NaOH) and a traditional 0.1 M Na2CO3 extraction to a wide array of samples: (1) terrestrial vegetation, (2) soils from forest, cropland and pasture, (3) lake sediments, (4) suspended particulate matter and sediments from rivers, (5) sediments from estuaries and salt marshes and (6) ocean sediments. Our results indicate that the 0.1 M Na2CO3 extraction protocol can overestimate the BSi content, by simultaneously dissolving Si fractions of nonbiogenic origin that may represent up to 100% of the Si traditionally considered as biogenic, hampering interpretation especially in some deeper soil horizons, rivers and coastal oceanic sediments. Moreover, although the term amorphous Si was coined to reflect a growing awareness of nonbiogenic phases we show it is actually inappropriate in samples where silicate minerals may account for a large part of the extracted Si even after linear mineral correction.
  •  
2.
  • Chi Fru, Ernest, et al. (författare)
  • Biogenicity of an Early Quaternary iron formation, Milos Island, Greece
  • 2015
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 13:3, s. 225-244
  • Tidskriftsartikel (refereegranskat)abstract
    • A ~2.0-million-year-old shallow-submarine sedimentary deposit on Milos Island, Greece, harbours an unmetamorphosed fossiliferous iron formation (IF) comparable to Precambrian banded iron formations (BIFs). This Milos IF holds the potential to provide clues to the origin of Precambrian BIFs, relative to biotic and abiotic processes. Here, we combine field stratigraphic observations, stable isotopes of C, S and Si, rock petrography and microfossil evidence from a ~5-m-thick outcrop to track potential biogeochemical processes that may have contributed to the formation of the BIF-type rocks and the abrupt transition to an overlying conglomerate-hosted IF (CIF). Bulk δ13C isotopic compositions lower than -25‰ provide evidence for biological contribution by the Calvin and reductive acetyl–CoA carbon fixation cycles to the origin of both the BIF-type and CIF strata. Low S levels of ~0.04 wt.% combined with δ34S estimates of up to ~18‰ point to a non-sulphidic depository. Positive δ30Si records of up to +0.53‰ in the finely laminated BIF-type rocks indicate chemical deposition on the seafloor during weak periods of arc magmatism. Negative δ30Si data are consistent with geological observations suggesting a sudden change to intense arc volcanism potentially terminated the deposition of the BIF-type layer. The typical Precambrian rhythmic rocks of alternating Fe- and Si-rich bands are associated with abundant and spatially distinct microbial fossil assemblages. Together with previously proposed anoxygenic photoferrotrophic iron cycling and low sedimentary N and C potentially connected to diagenetic denitrification, the Milos IF is a biogenic submarine volcano-sedimentary IF showing depositional conditions analogous to Archaean Algoma-type BIFs.
  •  
3.
  • Clymans, Wim, et al. (författare)
  • Silica uptake and release in live and decaying biomass in a northern hardwood forest
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97:11, s. 3044-3057
  • Tidskriftsartikel (refereegranskat)abstract
    • In terrestrial ecosystems, a large portion (20-80%) of the dissolved Si (DSi) in soil solution has passed through vegetation. While the importance of this terrestrial Si filter is generally accepted, few data exist on the pools and fluxes of Si in forest vegetation and the rate of release of Si from decomposing plant tissues. We quantified the pools and fluxes of Si through vegetation and coarse woody debris (CWD) in a northern hardwood forest ecosystem (Watershed 6, W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA. Previous work suggested that the decomposition of CWD may have significantly contributed to an excess of DSi reported in stream-waters following experimental deforestation of Watershed 2 (W2) at the HBEF. We found that woody biomass (wood+bark) and foliage account for approximately 65% and 31%, respectively, of the total Si in biomass at the HBEF. During the decay of American beech (Fagus grandifolia) boles, Si loss tracked the whole-bole mass loss, while yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum) decomposition resulted in a preferential Si retention of up to 30% after 16yr. A power-law model for the changes in wood and bark Si concentrations during decomposition, in combination with an exponential model for whole-bole mass loss, successfully reproduced Si dynamics in decaying boles. Our data suggest that a minimum of 50% of the DSi annually produced in the soil of a biogeochemical reference watershed (W6) derives from biogenic Si (BSi) dissolution. The major source is fresh litter, whereas only similar to 2% comes from the decay of CWD. Decay of tree boles could only account for 9% of the excess DSi release observed following the experimental deforestation of W2. Therefore, elevated DSi concentrations after forest disturbance are largely derived from other sources (e.g., dissolution of BSi from forest floor soils and/or mineral weathering).
  •  
4.
  • Deng, Kai, et al. (författare)
  • Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales
  • 2019
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 505, s. 96-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Taiwan rivers are characterized by extremely rapid mass wasting and sediment transfer due to active tectonics and frequent typhoons. Various methods have been applied to constrain processes affecting their sediment source-to-sink routing. In most cases, the sediment at the outlet is considered to be a representative average of the whole upstream basin due to the short sediment routes (<200 km). However, this assumption may be inappropriate because huge compositional heterogeneity can exist even within such small dynamic river systems. To reveal their intra-station and basin-wide geochemical heterogeneity, we collected sediment samples along the Zhuoshui and Liwu Rivers in Taiwan. Multiple samples deposited in different locations or with different grain-sizes were collected at each station, and the <63 μm fractions were measured for their elemental and Sr–Nd isotopic compositions. Elemental ratios and dimension-reducing technique were firstly applied to discriminate the sediment provenances. They show that the large elemental heterogeneity exists between samples at the same station and also between stations along each river, explainable by variable sediment mixing and local lithological heterogeneity. When combining our Sr–Nd isotopic data with literature data from Taiwan rivers, five discrete clusters of river sediments can be distinguished, reflecting the inter-catchment heterogeneity of sediment provenance in Taiwan Island. We also applied a Sr–Nd isotopic mixing model coupled with Monte-Carlo simulations to quantify the provenance heterogeneity in both rivers. The sediment contribution of the Western Foothills/Tailuko Belt to the Zhuoshui/Liwu downstream can vary by a factor of ∼2 between sediment samples that were considered as spatial or temporal replicates. Combined with field in-situ observations, we propose that fast-changing sediment transport modes cause the provenance heterogeneity in small dynamic mountainous rivers attacked by frequent heavy storms or typhoons. Sediments transported during different events and with different provenances can be preserved at each station, which leads to the intra-station and basin-wide geochemical heterogeneity. This study shows that “small” dynamic mountainous rivers can exhibit “large” geochemical and provenance heterogeneity over multi-spatial scales, and thus the common assumption that “let nature do the averaging” should be treated cautiously in this kind of river. Therefore, we propose several effective sediment sampling approaches on small mountainous rivers for reference. Future studies relying on detrital sediments, e.g. applying cosmogenic nuclides or Li isotopes, should also be aware of the heterogeneous nature in small mountainous rivers, because fast-changing provenances can simultaneously bias the weathering and erosion signals and lead to unrepresentative results.
  •  
5.
  • Fontorbe, G., et al. (författare)
  • A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes
  • 2016
  • Ingår i: Earth and Planetary Science Letters. ; 453, s. 67-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite being one of Earth's major geochemical cycles, the evolution of the silicon cycle has received little attention and changes in oceanic dissolved silica (DSi) concentration through geologic time remain poorly constrained. Silicon isotope ratios (expressed as delta Si-30) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the delta Si-30 of siliceous sponge spicules has been demonstrated to be a useful proxy for past DSi concentrations. We analysed delta Si-30 in radiolarian tests and sponge spicules from the Blake Nose Palaeoceanographic Transect (ODP Leg 171B) spanning the Palaeocene-Eocene (ca. 60-30 Ma). Our delta Si-30 results range from +0.32 to +1.67 parts per thousand and -0.48 to +0.63 parts per thousand for the radiolarian and sponge records, respectively. Using an established relationship between ambient dissolved Si (DSi) concentrations and the magnitude of silicon isotope fractionation in siliceous sponges, we demonstrate that the Western North Atlantic was DSi deplete during the Palaeocene-Eocene throughout the water column, a conclusion that is robust to a range of assumptions and uncertainties. These data can constitute constraints on reconstructions of past-ocean circulation. Previous work has suggested ocean DSi concentrations were higher than modern ocean concentrations prior to the Cenozoic and has posited a drawdown during the Early Palaeogene due to the evolutionary expansion of diatoms. Our results challenge such an interpretation. We suggest here that if such a global decrease in oceanic DSi concentrations occurred, it must predate 60 Ma. (C) 2016 The Authors. Published by Elsevier B.V.
  •  
6.
  • Fontorbe, Guillaume, et al. (författare)
  • Enrichment of dissolved silica in the deep equatorial Pacific during the Eocene-Oligocene
  • 2017
  • Ingår i: Paleoceanography. - 0883-8305 .- 1944-9186. ; 32, s. 848-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon isotope ratios (expressed as δ30Si) in marine microfossils can provide insights into silica cycling over geologic time. Here we used δ30Si of sponge spicules and radiolarian tests from the Paleogene Equatorial Transect (Ocean Drilling Program Leg 199) spanning the Eocene and Oligocene (~50–23 Ma) to reconstruct dissolved silica (DSi) concentrations in deep waters and to examine upper ocean δ30Si. The δ30Si values range from 3.16 to +0.18‰ and from 0.07 to +1.42‰ for the sponge and radiolarian records, respectively. Both records show a transition toward lower δ30Si values around 37 Ma. The shift in radiolarian δ30Si is interpreted as a consequence of changes in the δ30Si of source DSi to the region. The decrease in sponge δ30Si is interpreted as a transition from low DSi concentrations to higher DSi concentrations, most likely related to the shift toward a solely Southern Ocean source of deep water in the Pacific during the Paleogene that has been suggested by results from paleoceanographic tracers such as neodymium and carbon isotopes. Sponge δ30Si provides relatively direct information about the nutrient content of deep water and is a useful complement to other tracers of deep water circulation in the oceans of the past. 
  •  
7.
  • Frings, Patrick J, 1986-, et al. (författare)
  • Amorphous Silica Transport in the Ganges Basin : Implications for Si Delivery to the Oceans
  • 2014
  • Ingår i: Procedia Earth and Planetary Science. - : Elsevier BV. - 1878-5220. ; 10:0, s. 271-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Rivers transport ∽6 x1012 mol yr-1 of dissolved Si (DSi) from the continents to the oceans. They also carry amorphous silica (ASi), solid phases likely to dissolve in seawater. Unfortunately, the magnitude of this flux is poorly constrained at a global scale. We present 92 new ASi values from suspended particulate matter (SPM) from the Ganges basin. Bulk SPM is ∽1.2% ASi, and mean ASi concentrations are ∽65 μM, of comparable magnitude to DSi concentrations. Our results also indicate a) ASi is not evenly distributed in the water column of large rivers, b) the ASi is not a wholly biogenic Si endmember and c) the ASi flux is, to a first order, a function of the SPM load. Our results suggest that the ASi particulate load is much greater than previously believed, rivaling that of the DSi load with important implications for the global Si cycle and oceanic Si isotopic budget.
  •  
8.
  •  
9.
  • Frings, Patrick J, 1986- (författare)
  • Revisiting the dissolution of biogenic Si in marine sediments: a key term in the ocean Si budget
  • 2017
  • Ingår i: Acta Geochimica. - : Springer Science and Business Media LLC. - 2096-0956 .- 2365-7499. ; 36:3, s. 429-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Of the ~240 × 1012 mol year−1 of biogenic silica (bSi) produced by diatoms and other silicifying organisms, only roughly 3%–4% escapes dissolution to be permanently buried. At the global scale, how, where and why bSi is preserved in sediment is not well understood. To help address this, I compile 6245 porewater dissolved Si concentrations from 453 sediment cores, to derive the concentration gradient at the sediment–water interface and thus diffusive fluxes out of the sediment. These range from <0.002 to 3.4 mol m−2 year−1, and are independent of temperature, depth and latitude. When classified by sediment lithology, predominantly siliceous sediments unsurprisingly have higher mean diffusive fluxes than predominantly calcareous or clay-rich sediment. Combined with the areal extent of these lithologies, the ‘best-guess’ global sedimentary bSi recycling flux is 69 × 1012 mol year−1.
  •  
10.
  • Frings, Patrick J, 1986-, et al. (författare)
  • Silicate weathering in the Ganges alluvial plain
  • 2015
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 427, s. 136-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km(-2) yr(-1), respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as delta Si-30) varies from +0.8 parts per thousand in the Ganges mainstem at the Himalaya front to +3.0 parts per thousand in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher delta Si-30 values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km(-2) yr(-1), for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively). (C) 2015 The Authors. Published by Elsevier B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy