SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "LAR1:uu ;hsvcat:3;hsvcat:1"

Search: LAR1:uu > Medical and Health Sciences > Natural sciences

  • Result 1-10 of 2530
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abarenkov, Kessy, et al. (author)
  • Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden)
  • 2016
  • In: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 16, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Recent molecular studies have identified substantial fungal diversity in indoor environments. Fungi and fungal particles have been linked to a range of potentially unwanted effects in the built environment, including asthma, decay of building materials, and food spoilage. The study of the built mycobiome is hampered by a number of constraints, one of which is the poor state of the metadata annotation of fungal DNA sequences from the built environment in public databases. In order to enable precise interrogation of such data – for example, “retrieve all fungal sequences recovered from bathrooms” – a workshop was organized at the University of Gothenburg (May 23-24, 2016) to annotate public fungal barcode (ITS) sequences according to the MIxS-Built Environment annotation standard (http://gensc.org/mixs/). The 36 participants assembled a total of 45,488 data points from the published literature, including the addition of 8,430 instances of countries of collection from a total of 83 countries, 5,801 instances of building types, and 3,876 instances of surface-air contaminants. The results were implemented in the UNITE database for molecular identification of fungi (http://unite.ut.ee) and were shared with other online resources. Data obtained from human/animal pathogenic fungi will furthermore be verified on culture based metadata for subsequent inclusion in the ISHAM-ITS database (http://its.mycologylab.org).
  •  
2.
  • Tedersoo, Leho, et al. (author)
  • Response to Comment on “Global diversity and geography of soil fungi”
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 349:6251
  • Journal article (other academic/artistic)abstract
    • Schadt and Rosling (Technical Comment, 26 June 2015, p. 1438) argue that primer-template mismatches neglected the fungal class Archaeorhizomycetes in a global soil survey. Amplicon-based metabarcoding of nine barcode-primer pair combinations and polymerase chain reaction (PCR)–free shotgun metagenomics revealed that barcode and primer choice and PCR bias drive the diversity and composition of microorganisms in general, but the Archaeorhizomycetes were little affected in the global study. We urge that careful choice of DNA markers and primers is essential for ecological studies using high-throughput sequencing for identification.
  •  
3.
  • Bengtsson-Palme, Johan, 1985, et al. (author)
  • Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data
  • 2013
  • In: Methods in Ecology and Evolution. - 2041-210X. ; 4:10, s. 914-919
  • Journal article (peer-reviewed)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the primary choice for molecular identification of fungi. Its two highly variable spacers (ITS1 and ITS2) are usually species specific, whereas the intercalary 5.8S gene is highly conserved. For sequence clustering and blast searches, it is often advantageous to rely on either one of the variable spacers but not the conserved 5.8S gene. To identify and extract ITS1 and ITS2 from large taxonomic and environmental data sets is, however, often difficult, and many ITS sequences are incorrectly delimited in the public sequence databases. We introduce ITSx, a Perl-based software tool to extract ITS1, 5.8S and ITS2 – as well as full-length ITS sequences – from both Sanger and high-throughput sequencing data sets. ITSx uses hidden Markov models computed from large alignments of a total of 20 groups of eukaryotes, including fungi, metazoans and plants, and the sequence extraction is based on the predicted positions of the ribosomal genes in the sequences. ITSx has a very high proportion of true-positive extractions and a low proportion of false-positive extractions. Additionally, process parallelization permits expedient analyses of very large data sets, such as a one million sequence amplicon pyrosequencing data set. ITSx is rich in features and written to be easily incorporated into automated sequence analysis pipelines. ITSx paves the way for more sensitive blast searches and sequence clustering operations for the ITS region in eukaryotes. The software also permits elimination of non-ITS sequences from any data set. This is particularly useful for amplicon-based next-generation sequencing data sets, where insidious non-target sequences are often found among the target sequences. Such non-target sequences are difficult to find by other means and would contribute noise to diversity estimates if left in the data set.
  •  
4.
  • Sepehri, Sobhan, 1986, et al. (author)
  • Characterization of Binding of Magnetic Nanoparticles to Rolling Circle Amplification Products by Turn-On Magnetic Assay
  • 2019
  • In: Biosensors-Basel. - : MDPI AG. ; 9:3
  • Journal article (peer-reviewed)abstract
    • The specific binding of oligonucleotide-tagged 100 nm magnetic nanoparticles (MNPs) to rolling circle products (RCPs) is investigated using our newly developed differential homogenous magnetic assay (DHMA). The DHMA measures ac magnetic susceptibility from a test and a control samples simultaneously and eliminates magnetic background signal. Therefore, the DHMA can reveal details of binding kinetics of magnetic nanoparticles at very low concentrations of RCPs. From the analysis of the imaginary part of the DHMA signal, we find that smaller MNPs in the particle ensemble bind first to the RCPs. When the RCP concentration increases, we observe the formation of agglomerates, which leads to lower number of MNPs per RCP at higher concentrations of RCPs. The results thus indicate that a full frequency range of ac susceptibility observation is necessary to detect low concentrations of target RCPs and a long amplification time is not required as it does not significantly increase the number of MNPs per RCP. The findings are critical for understanding the underlying microscopic binding process for improving the assay performance. They furthermore suggest DHMA is a powerful technique for dynamically characterizing the binding interactions between MNPs and biomolecules in fluid volumes.
  •  
5.
  • Nyandoro, Stephen S., 1975, et al. (author)
  • N-Cinnamoyltetraketide Derivatives from the Leaves of Toussaintia orientalis
  • 2015
  • In: Journal of natural products. - : American Chemical Society (ACS). - 0163-3864 .- 1520-6025. ; 78:8, s. 2045-2050
  • Journal article (peer-reviewed)abstract
    • Seven N-cinnamoyltetraketides (1–7), including the new Z-toussaintine E (2), toussaintine F (6), and toussaintine G (7), were isolated from the methanol extract of the leaves of Toussaintia orientalis using column chromatography and HPLC. The configurations of E-toussaintine E (1) and toussaintines A (3) and D (5) are revised based on single-crystal X-ray diffraction data from racemic crystals. Both the crude methanol extract and the isolated constituents exhibit antimycobacterial activities (MIC 83.3–107.7 μM) against the H37Rv strain of Mycobacterium tuberculosis. Compounds 1, 3, 4, and 5 are cytotoxic (ED50 15.3–105.7 μM) against the MDA-MB-231 triple negative aggressive breast cancer cell line.
  •  
6.
  • Ohrvik, Helena, et al. (author)
  • Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation?
  • 2015
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 16:8, s. 16728-39
  • Journal article (peer-reviewed)abstract
    • The human copper (Cu) chaperone Atox1 delivers Cu to P1B type ATPases in the Golgi network, for incorporation into essential Cu-dependent enzymes. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed Cys-X-X-Cys (CXXC) motif. In addition to its well-documented cytoplasmic chaperone function, in 2008 Atox1 was suggested to have functionality in the nucleus. To identify new interactions partners of Atox1, we performed a yeast two-hybrid screen with a large human placenta library of cDNA fragments using Atox1 as bait. Among 98 million fragments investigated, 25 proteins were found to be confident interaction partners. Nine of these were uncharacterized proteins, and the remaining 16 proteins were analyzed by bioinformatics with respect to cell localization, tissue distribution, function, sequence motifs, three-dimensional structures and interaction networks. Several of the hits were eukaryotic-specific proteins interacting with DNA or RNA implying that Atox1 may act as a modulator of gene regulation. Notably, because many of the identified proteins contain CXXC motifs, similarly to the Cu transport reactions, interactions between these and Atox1 may be mediated by Cu.
  •  
7.
  • Hyde, Kevin D., et al. (author)
  • Incorporating molecular data in fungal systematics: a guide for aspiring researchers
  • 2013
  • In: Current Research in Environmental and Applied Mycology. - : Mushroom Research Foundation. - 2229-2225. ; 3:1
  • Journal article (peer-reviewed)abstract
    • The last twenty years have witnessed molecular data emerge as a primary research instrument in most branches of mycology. Fungal systematics, taxonomy, and ecology have all seen tremendous progress and have undergone rapid, far-reaching changes as disciplines in the wake of continual improvement in DNA sequencing technology. A taxonomic study that draws from molecular data involves a long series of steps, ranging from taxon sampling through the various laboratory procedures and data analysis to the publication process. All steps are important and influence the results and the way they are perceived by the scientific community. The present paper provides a reflective overview of all major steps in such a project with the purpose to assist research students about to begin their first study using DNA-based methods. We also take the opportunity to discuss the role of taxonomy in biology and the life sciences in general in the light of molecular data. While the best way to learn molecular methods is to work side by side with someone experienced, we hope that the present paper will serve to lower the learning threshold for the reader.
  •  
8.
  • Senkowski, Wojciech (author)
  • High-throughput screening using multicellular tumor spheroids to reveal and exploit tumor-specific vulnerabilities
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • High-throughput drug screening (HTS) in live cells is often a vital part of the preclinical anticancer drug discovery process. So far, two-dimensional (2D) monolayer cell cultures have been the most prevalent model in HTS endeavors. However, 2D cell cultures often fail to recapitulate the complex microenvironments of in vivo tumors. Monolayer cultures are highly proliferative and generally do not contain quiescent cells, thought to be one of the main reasons for the anticancer therapy failure in clinic. Thus, there is a need for in vitro cellular models that would increase predictive value of preclinical research results. The utilization of more complex three-dimensional (3D) cell cultures, such as multicellular tumor spheroids (MCTS), which contain both proliferating and quiescent cells, has therefore been proposed. However, difficult handling and high costs still pose significant hurdles for application of MCTS for HTS.In this work, we aimed to develop novel assays to apply MCTS for HTS and drug evaluation. We also set out to identify cellular processes that could be targeted to selectively eradicate quiescent cancer cells. In Paper I, we developed a novel MCTS-based HTS assay and found that nutrient-deprived and hypoxic cancer cells are selectively vulnerable to treatment with inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). We also identified nitazoxanide, an FDA-approved anthelmintic agent, to act as an OXPHOS inhibitor and to potentiate the effects of standard chemotherapy in vivo. Subsequently, in Paper II we applied the high-throughput gene-expression profiling method for MCTS-based drug screening. This led to discovery that quiescent cells up-regulate the mevalonate pathway upon OXPHOS inhibition and that the combination of OXPHOS inhibitors and mevalonate pathway inhibitors (statins) results in synergistic toxicity in this cell population. In Paper III, we developed a novel spheroid-based drug combination-screening platform and identified a set of molecules that synergize with nitazoxanide to eradicate quiescent cancer cells. Finally, in Paper IV, we applied our MCTS-based methods to evaluate the effects of phosphodiesterase (PDE) inhibitors in PDE3A-expressing cell lines.In summary, this work illustrates how MCTS-based HTS yields potential to reveal and exploit previously unrecognized tumor-specific vulnerabilities. It also underscores the importance of cell culture conditions in preclinical drug discovery endeavors.
  •  
9.
  • Nilsson, R. Henrik, 1976, et al. (author)
  • A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts
  • 2015
  • In: Microbes and Environments. - 1342-6311 .- 1347-4405. ; 30:2, s. 145-150
  • Journal article (peer-reviewed)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen genetic marker for the molecular identification of fungi in environmental sequencing and molecular ecology studies. Several analytical issues complicate such efforts, one of which is the formation of chimeric—artificially joined—DNA sequences during PCR amplification or sequence assembly. Several software tools are currently available for chimera detection, but rely to various degrees on the presence of a chimera-free reference dataset for optimal performance. However, no such dataset is available for use with the fungal ITS region. This study introduces a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database for the molecular identification of fungi. This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. The performance of the dataset on a large set of artificial chimeras was above 99.5%, and we subsequently used the dataset to remove nearly 1,000 compromised fungal ITS sequences from public circulation. The dataset is available at http://unite.ut.ee/repository.php and is subject to web-based third-party curation.
  •  
10.
  • Nilsson, R. Henrik, 1976, et al. (author)
  • Improving ITS sequence data for identification of plant pathogenic fungi
  • 2014
  • In: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 11-19
  • Journal article (peer-reviewed)abstract
    • Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 2530
Type of publication
journal article (2115)
research review (135)
doctoral thesis (103)
conference paper (70)
other publication (67)
book chapter (32)
show more...
reports (3)
book (2)
editorial collection (1)
artistic work (1)
patent (1)
review (1)
show less...
Type of content
peer-reviewed (2240)
other academic/artistic (269)
pop. science, debate, etc. (18)
Author/Editor
Nilsson Ekdahl, Kris ... (69)
Nilsson, Bo (62)
Lind, Lars (58)
Olsen, Björn (54)
Uhlén, Mathias (48)
Bergquist, Jonas (45)
show more...
Erdelyi, Mate, 1975 (42)
Nilsson, Mats (38)
Pontén, Fredrik (37)
Tolmachev, Vladimir (35)
Pejler, Gunnar (35)
Waldenström, Jonas (28)
Scandurra, Isabella, ... (27)
Lindblad-Toh, Kersti ... (24)
Hellman, Lars (22)
Ingelsson, Erik (22)
Malmsten, Martin (22)
El-Seedi, Hesham (21)
Khalifa, Shaden A. M ... (21)
Pettersson, Curt (21)
Nyholm, Dag (21)
Lindskog, Cecilia (20)
Teramura, Yuji (20)
Järhult, Josef D., 1 ... (20)
Andersson, Leif (20)
Jazin, Elena (20)
El-Seedi, Hesham R. (19)
Schiöth, Helgi B. (19)
Fagerberg, Linn (18)
Orlova, Anna, 1960- (18)
Sandholm, Kerstin (18)
Löfblom, John (18)
Larhed, Mats (17)
Cajander, Åsa, Profe ... (17)
Hedeland, Mikael (17)
Salihovic, Samira, 1 ... (17)
Larsson, Anders (16)
Nilsson, Peter (16)
Orlova, Anna (16)
Landegren, Ulf (16)
Lundkvist, Åke (16)
Fromell, Karin (16)
Komorowski, Jan (16)
Ohlsson, Claes, 1965 (15)
Bonnedahl, Jonas (15)
Williams, Michael J. (15)
Sjöblom, Tobias (15)
Nelander, Sven (15)
Kampf, Caroline (15)
Lind, P. Monica (15)
show less...
University
Uppsala University (2530)
Karolinska Institutet (519)
University of Gothenburg (277)
Stockholm University (272)
Lund University (244)
Swedish University of Agricultural Sciences (234)
show more...
Royal Institute of Technology (221)
Umeå University (164)
Linköping University (155)
Örebro University (154)
Linnaeus University (144)
Chalmers University of Technology (118)
Högskolan Dalarna (36)
University of Skövde (32)
RISE (20)
Karlstad University (20)
Mälardalen University (12)
Södertörn University (10)
University of Gävle (9)
Jönköping University (8)
Swedish Museum of Natural History (8)
Luleå University of Technology (7)
Malmö University (7)
Stockholm School of Economics (6)
Kristianstad University College (5)
Halmstad University (5)
Mid Sweden University (5)
Blekinge Institute of Technology (3)
University of Borås (2)
Sophiahemmet University College (2)
The Swedish School of Sport and Health Sciences (1)
Swedish National Defence College (1)
Red Cross University College (1)
show less...
Language
English (2520)
Swedish (9)
German (1)
Research subject (UKÄ/SCB)
Engineering and Technology (120)
Agricultural Sciences (80)
Social Sciences (50)
Humanities (21)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view